For a single operator
Consider a vector space and a linear map A subspace is called an invariant subspace for , or equivalently, -invariant, if transforms any vector back into . In formulas, this can be writtenor In this case, restricts to an endomorphism of : The existence of an invariant subspace also has a matrix formulation. Pick a basis ''C'' for ''W'' and complete it to a basis ''B'' of ''V''. With respect to , the operator has form for some and , where here denotes the matrix of with respect to the basis ''C''.Examples
Any linear map admits the following invariant subspaces: * The vector space , because maps every vector in into * The set , because . These are the improper and trivial invariant subspaces, respectively. Certain linear operators have no proper non-trivial invariant subspace: for instance,1-dimensional subspaces
If is a 1-dimensional invariant subspace for operator with vector , then the vectors and must be linearly dependent. Thus In fact, the scalar does not depend on . The equation above formulates an eigenvalue problem. Any eigenvector for spans a 1-dimensional invariant subspace, and vice-versa. In particular, a nonzero invariant vector (i.e. a fixed point of ''T'') spans an invariant subspace of dimension 1. As a consequence of the fundamental theorem of algebra, every linear operator on a nonzero finite-dimensional complex vector space has an eigenvector. Therefore, every such linear operator in at least two dimensions has a proper non-trivial invariant subspace.Diagonalization via projections
Determining whether a given subspace ''W'' is invariant under ''T'' is ostensibly a problem of geometric nature. Matrix representation allows one to phrase this problem algebraically. Write as the direct sum ; a suitable can always be chosen by extending a basis of . The associated projection operator ''P'' onto ''W'' has matrix representation : A straightforward calculation shows that ''W'' is -invariant if and only if ''PTP'' = ''TP''. If 1 is the identity operator, then is projection onto . The equation holds if and only if both im(''P'') and im(1 − ''P'') are invariant under ''T''. In that case, ''T'' has matrix representation Colloquially, a projection that commutes with ''T'' "diagonalizes" ''T''.Lattice of subspaces
As the above examples indicate, the invariant subspaces of a given linear transformation ''T'' shed light on the structure of ''T''. When ''V'' is a finite-dimensional vector space over an algebraically closed field, linear transformations acting on ''V'' are characterized (up to similarity) by the Jordan canonical form, which decomposes ''V'' into invariant subspaces of ''T''. Many fundamental questions regarding ''T'' can be translated to questions about invariant subspaces of ''T''. The set of -invariant subspaces of is sometimes called the invariant-subspace lattice of and written . As the name suggests, it is a ( modular) lattice, with meets and joins given by (respectively) set intersection and linear span. A minimal element in in said to be a minimal invariant subspace. In the study of infinite-dimensional operators, is sometimes restricted to only the closed invariant subspaces.For multiple operators
Given a collection of operators, a subspace is called -invariant if it is invariant under each . As in the single-operator case, the invariant-subspace lattice of , written , is the set of all -invariant subspaces, and bears the same meet and join operations. Set-theoretically, it is the intersectionExamples
Let be the set of all linear operators on . Then . Given a representation of a group ''G'' on a vector space ''V'', we have a linear transformation ''T''(''g'') : ''V'' → ''V'' for every element ''g'' of ''G''. If a subspace ''W'' of ''V'' is invariant with respect to all these transformations, then it is a subrepresentation and the group ''G'' acts on ''W'' in a natural way. The same construction applies to representations of an algebra. As another example, let and be the algebra generated by , where 1 is the identity operator. Then Lat(''T'') = Lat(Σ).Fundamental theorem of noncommutative algebra
Just as the fundamental theorem of algebra ensures that every linear transformation acting on a finite-dimensional complex vector space has a non-trivial invariant subspace, the ''fundamental theorem of noncommutative algebra'' asserts that Lat(Σ) contains non-trivial elements for certain Σ. One consequence is that every commuting family in ''L''(''V'') can be simultaneously upper-triangularized. To see this, note that an upper-triangular matrix representation corresponds to aLeft ideals
If ''A'' is anInvariant subspace problem
: The invariant subspace problem concerns the case where ''V'' is a separableAlmost-invariant halfspaces
Related to invariant subspaces are so-called almost-invariant-halfspaces (AIHS's). A closed subspace of a Banach space is said to be almost-invariant under an operator if for some finite-dimensional subspace ; equivalently, is almost-invariant under if there is a finite-rank operator such that , i.e. if is invariant (in the usual sense) under . In this case, the minimum possible dimension of (or rank of ) is called the defect. Clearly, every finite-dimensional and finite-codimensional subspace is almost-invariant under every operator. Thus, to make things non-trivial, we say that is a halfspace whenever it is a closed subspace with infinite dimension and infinite codimension. The AIHS problem asks whether every operator admits an AIHS. In the complex setting it has already been solved; that is, if is a complex infinite-dimensional Banach space and then admits an AIHS of defect at most 1. It is not currently known whether the same holds if is a real Banach space. However, some partial results have been established: for instance, any self-adjoint operator on an infinite-dimensional real Hilbert space admits an AIHS, as does any strictly singular (or compact) operator acting on a real infinite-dimensional reflexive space.See also
* Invariant manifold * Lomonosov's invariant subspace theoremReferences
Sources
* * * * * * *{{cite book , last=Roman , first=Stephen , title=Advanced Linear Algebra , edition=Third , series=