HOME
*



picture info

Per Enflo
Per H. Enflo (; born 20 May 1944) is a Swedish mathematician working primarily in functional analysis, a field in which he solved problems that had been considered fundamental. Three of these problems had been open for more than forty years: * The basis problem and the approximation problem and later * the invariant subspace problem for Banach spaces. In solving these problems, Enflo developed new techniques which were then used by other researchers in functional analysis and operator theory for years. Some of Enflo's research has been important also in other mathematical fields, such as number theory, and in computer science, especially computer algebra and approximation algorithms. Enflo works at Kent State University, where he holds the title of University Professor. Enflo has earlier held positions at the Miller Institute for Basic Research in Science at the University of California, Berkeley, Stanford University, École Polytechnique, (Paris) and The Royal Institute of Techn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stockholm
Stockholm () is the Capital city, capital and List of urban areas in Sweden by population, largest city of Sweden as well as the List of urban areas in the Nordic countries, largest urban area in Scandinavia. Approximately 980,000 people live in the Stockholm Municipality, municipality, with 1.6 million in the Stockholm urban area, urban area, and 2.4 million in the Metropolitan Stockholm, metropolitan area. The city stretches across fourteen islands where Mälaren, Lake Mälaren flows into the Baltic Sea. Outside the city to the east, and along the coast, is the island chain of the Stockholm archipelago. The area has been settled since the Stone Age, in the 6th millennium BC, and was founded as a city in 1252 by Swedish statesman Birger Jarl. It is also the county seat of Stockholm County. For several hundred years, Stockholm was the capital of Finland as well (), which then was a part of Sweden. The population of the municipality of Stockholm is expected to reach o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Approximation Problem
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved question ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joram Lindenstrauss
Joram Lindenstrauss ( he, יורם לינדנשטראוס) (October 28, 1936 – April 29, 2012) was an Israeli mathematician working in functional analysis. He was a professor of mathematics at the Einstein Institute of Mathematics. Biography Joram Lindenstrauss was born in Tel Aviv. He was the only child of a pair of lawyers who immigrated to Israel from Berlin. He began to study mathematics at the Hebrew University of Jerusalem in 1954 while serving in the army. He became a full-time student in 1956 and received his master's degree in 1959. In 1962 Lindenstrauss earned his Ph.D. from the Hebrew University (dissertation: ''Extension of Compact Operators'', advisors: Aryeh Dvoretzky, Branko Grünbaum). He worked as a postdoc at Yale University and the University of Washington in Seattle from 1962 - 1965. He was appointed senior lecturer at the Hebrew University in 1965, associate professor on 1967 and full professor in 1969. He became the Leon H. and Ada G. Miller Memorial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant Subspace Problem
In the field of mathematics known as functional analysis, the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends some non-trivial closed subspace to itself. Many variants of the problem have been solved, by restricting the class of bounded operators considered or by specifying a particular class of Banach spaces. The problem is still open for separable Hilbert spaces (in other words, each example, found so far, of an operator with no non-trivial invariant subspaces is an operator that acts on a Banach space that is not isomorphic to a separable Hilbert space). History The problem seems to have been stated in the mid-1900s after work by Beurling and von Neumann,. who found (but never published) a positive solution for the case of compact operators. It was then posed by Paul Halmos for the case of operators T such that T^2 is compact. This was resolved affirmatively, for the more general class of polyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bombieri Norm
In mathematics, the Bombieri norm, named after Enrico Bombieri, is a norm on homogeneous polynomials with coefficient in \mathbb R or \mathbb C (there is also a version for non homogeneous univariate polynomials). This norm has many remarkable properties, the most important being listed in this article. Bombieri scalar product for homogeneous polynomials To start with the geometry, the ''Bombieri scalar product'' for homogeneous polynomials with ''N'' variables can be defined as follows using multi-index notation: \forall \alpha,\beta \in \mathbb^N by definition different monomials are orthogonal, so that \langle X^\alpha , X^\beta \rangle = 0 if \alpha \neq \beta, while \forall \alpha \in \mathbb^N by definition \, X^\alpha\, ^2 = \frac. In the above definition and in the rest of this article the following notation applies: if \alpha = (\alpha_1,\dots,\alpha_N) \in \mathbb^N, write , \alpha, = \sum_^N \alpha_i and \alpha! = \prod_^N (\alpha_i!) and X^\alpha = \prod_^N X_i^. B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Cube
In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of ''substitutions'' required to change one string into the other, or the minimum number of ''errors'' that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming. A major application is in coding theory, more specifically to block codes, in which the equal-length strings are vectors over a finite field. Definition The Hamming distance between two equal-length strings of symbols is the number of positions at which the corresponding symbols are different. Examples The symbols may be letters, bits, or decimal digits, among other possibilities. For example, the Hamming distance between: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Space
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space (and so in particular, every Banach space) X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is reflexive but is nevertheless isometrically isomorphic to its bidual (any such isomorphism is thus necessarily the canonical evaluation map). Reflexive spaces play an important role in the general theory of locally convex TVSs and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of reflexive Banach spaces. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every normed vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]