Adams Filtration
   HOME
*





Adams Filtration
In mathematics, especially in the area of algebraic topology known as stable homotopy theory, the Adams filtration and the Adams–Novikov filtration allow a stable homotopy group to be understood as built from layers, the ''n''th layer containing just those maps which require at most ''n'' auxiliary spaces in order to be a composition of homologically trivial maps. These filtrations, named after Frank Adams and Sergei Novikov, are of particular interest because the Adams (–Novikov) spectral sequence converges to them. Definition The group of stable homotopy classes ,Y/math> between two spectra ''X'' and ''Y'' can be given a filtration by saying that a map f\colon X\to Y has filtration ''n'' if it can be written as a composite of maps :X=X_0 \to X_1 \to \cdots \to X_n = Y such that each individual map X_i\to X_ induces the zero map in some fixed homology theory ''E''. If ''E'' is ordinary mod-''p'' homology Homology may refer to: Sciences Biology *Homology (bio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Homotopy Theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space X, the homotopy groups \pi_(\Sigma^n X) stabilize for n sufficiently large. In particular, the homotopy groups of spheres \pi_(S^n) stabilize for n\ge k + 2. For example, :\langle \text_\rangle = \Z = \pi_1(S^1)\cong \pi_2(S^2)\cong \pi_3(S^3)\cong\cdots :\langle \eta \rangle = \Z = \pi_3(S^2)\to \pi_4(S^3)\cong \pi_5(S^4)\cong\cdots In the two examples above all the maps between homotopy groups are applications of the suspension functor. The first example is a standard corollary of the Hurewicz theorem, that \pi_n(S^n)\cong \Z. In the second example the Hopf map, \eta, is mapped to its suspension \Sigma\eta, which generates \pi_4(S^3)\cong \Z/2. One of the most i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frank Adams
John Frank Adams (5 November 1930 – 7 January 1989) was a British mathematician, one of the major contributors to homotopy theory. Life He was born in Woolwich, a suburb in south-east London, and attended Bedford School. He began research as a student of Abram Besicovitch, but soon switched to algebraic topology. He received his PhD from the University of Cambridge in 1956. His thesis, written under the direction of Shaun Wylie, was titled ''On spectral sequences and self-obstruction invariants''. He held the Fielden Chair of Pure Mathematics, Fielden Chair at the University of Manchester (1964–1970), and became Lowndean Professor of Astronomy and Geometry at the University of Cambridge (1970–1989). He was elected a Fellow of the Royal Society in 1964. His interests included mountaineering—he would demonstrate how to climb right round a table at parties (a Hassler Whitney, Whitney traverse)—and the game of go (game), Go. He died in a car crash in Brampton, Cambr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sergei Novikov (mathematician)
Sergei Petrovich Novikov (also Serguei) (Russian: Серге́й Петро́вич Но́виков) (born 20 March 1938) is a Soviet and Russian mathematician, noted for work in both algebraic topology and soliton theory. In 1970, he won the Fields Medal. Early life Novikov was born on 20 March 1938 in Gorky, Soviet Union (now Nizhny Novgorod, Russia). He grew up in a family of talented mathematicians. His father was Pyotr Sergeyevich Novikov, who gave a negative solution to the word problem for groups. His mother, Lyudmila Vsevolodovna Keldysh, and maternal uncle, Mstislav Vsevolodovich Keldysh, were also important mathematicians. In 1955 Novikov entered Moscow State University, from which he graduated in 1960. Four years later he received the Moscow Mathematical Society Award for young mathematicians. In the same year he defended a dissertation for the ''Candidate of Science in Physics and Mathematics'' degree (equivalent to the PhD) at Moscow State University. In 196 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adams Spectral Sequence
In mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. Motivation For everything below, once and for all, we fix a prime ''p''. All spaces are assumed to be CW complexes. The ordinary cohomology groups H^*(X) are understood to mean H^*(X; \Z/p\Z). The primary goal of algebraic topology is to try to understand the collection of all maps, up to homotopy, between arbitrary spaces ''X'' and ''Y''. This is extraordinarily ambitious: in particular, when ''X'' is S^n, these maps form the ''n''th homotopy group of ''Y''. A more reasonable (but still very difficult!) goal is to understand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spectrum (homotopy Theory)
In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory\mathcal^*:\text^ \to \text,there exist spaces E^k such that evaluating the cohomology theory in degree k on a space X is equivalent to computing the homotopy classes of maps to the space E^k, that is\mathcal^k(X) \cong \left , E^k\right/math>.Note there are several different categories of spectra leading to many technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory. The definition of a spectrum There are many variations of the definition: in general, a ''spectrum'' is any sequence X_n of pointed topological spaces or pointed simplicial sets together with th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtration (mathematics)
In mathematics, a filtration \mathcal is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that ::if i\leq j in I, then S_i\subseteq S_j. If the index i is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure S_i gaining in complexity with time. Hence, a process that is adapted to a filtration \mathcal is also called non-anticipating, because it cannot "see into the future". Sometimes, as in a filtered algebra, there is instead the requirement that the S_i be subalgebras with respect to some operations (say, vector addition), but not with respect to other operations (say, multiplication) that satisfy only S_i \cdot S_j \subseteq S_, where the index set is the natural numbers; this is by analogy with a graded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology Theory
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space ''X'', the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension ''n'', the ''n''-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the standard ''n''-simplex to a topological space, and composing them into formal sums, called singular chains. The boundary operation – mapping each ''n''-dimensional simplex to its (''n''−1)-dimensional boundary – induces the singular chain complex. The singular homology is then the homology of the chain complex. The resulting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]