AdaBoost
AdaBoost, short for ''Adaptive Boosting'', is a statistical classification meta-algorithm formulated by Yoav Freund and Robert Schapire in 1995, who won the 2003 Gödel Prize for their work. It can be used in conjunction with many other types of learning algorithms to improve performance. The output of the other learning algorithms ('weak learners') is combined into a weighted sum that represents the final output of the boosted classifier. Usually, AdaBoost is presented for binary classification, although it can be generalized to multiple classes or bounded intervals on the real line. AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor of those instances misclassified by previous classifiers. In some problems it can be less susceptible to the overfitting problem than other learning algorithms. The individual learners can be weak, but as long as the performance of each one is slightly better than random guessing, the final model can be proven to con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boosting (meta-algorithm)
In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant (1988, 1989):Michael Kearns(1988)''Thoughts on Hypothesis Boosting'' Unpublished manuscript (Machine Learning class project, December 1988) "Can a set of weak learners create a single strong learner?" A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing). In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire's affirmative answer in a 1990 paper to the question of Kearns and Valiant has had significant ramifications in machine learning and statistics, most notably leading to the development of boosting. When first introduced, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CoBoosting
CoBoost is a semi-supervised training algorithm proposed by Collins and Singer in 1999. The original application for the algorithm was the task of Named Entity Classification using very weak learners.Michael Collins and Yoram Singer, Unsupervised Models for Named Entity Classification. Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 100-110, 1999. It can be used for performing semi-supervised learning in cases in which there exist redundancy in features. It may be seen as a combination of co-training and boosting. Each example is available in two views (subsections of the feature set), and boosting is applied iteratively in alternation with each view using predicted labels produced in the alternate view on the previous iteration. CoBoosting is not a valid boosting algorithm in the PAC learning sense. Motivation CoBoosting was an attempt by Collins and Singer to improve on previous attempts to leverag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
BrownBoost
BrownBoost is a boosting algorithm that may be robust to noisy datasets. BrownBoost is an adaptive version of the boost by majority algorithm. As is true for all boosting algorithms, BrownBoost is used in conjunction with other machine learning methods. BrownBoost was introduced by Yoav Freund in 2001.Yoav Freund. An adaptive version of the boost by majority algorithm. Machine Learning, 43(3):293--318, June 2001. Motivation AdaBoost performs well on a variety of datasets; however, it can be shown that AdaBoost does not perform well on noisy data sets.Dietterich, T. G., (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40 (2) 139-158. This is a result of AdaBoost's focus on examples that are repeatedly misclassified. In contrast, BrownBoost effectively "gives up" on examples that are repeatedly misclassified. The core assumption of BrownBoost is that noisy examples will b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bootstrap Aggregating
Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach. Description of the technique Given a standard training set D of size ''n'', bagging generates ''m'' new training sets D_i, each of size ''n′'', by sampling from ''D'' uniformly and with replacement. By sampling with replacement, some observations may be repeated in each D_i. If ''n ′''=''n'', then for large ''n'' the set D_i is expected to have the fraction (1 - 1/'' e'') (≈63.2%) of the unique examples of ''D'', the rest being duplicates. This kind of sample is known as a bootstrap sample. Sampling with replacement ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decision Tree Learning
Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations. Tree models where the target variable can take a discrete set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. Decision trees are among the most popular machine learning algorithms given their intelligibility and simplicity. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In data mining, a decision tree describes data (but the resulting classification tree can be an input for decision making). General Dec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Loss Functions For Classification
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). Given \mathcal as the space of all possible inputs (usually \mathcal \subset \mathbb^d), and \mathcal = \ as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function f: \mathcal \to \mathcal which best predicts a label y for a given input \vec. However, because of incomplete information, noise in the measurement, or probabilistic components in the underlying process, it is possible for the same \vec to generate different y. As a result, the goal of the learning problem is to minimize expected loss (also known as the risk), defined as :I = \displaystyle \int_ V(f(\vec),y) \, p(\vec,y) \, d\vec \, dy where V(f(\vec),y) is a given loss function, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LPBoost
Linear Programming Boosting (LPBoost) is a supervised classifier from the boosting family of classifiers. LPBoost maximizes a ''margin'' between training samples of different classes and hence also belongs to the class of margin-maximizing supervised classification algorithms. Consider a classification function : f: \mathcal \to \, which classifies samples from a space \mathcal into one of two classes, labelled 1 and -1, respectively. LPBoost is an algorithm to ''learn'' such a classification function given a set of training examples with known class labels. LPBoost is a machine learning technique and especially suited for applications of joint classification and feature selection in structured domains. LPBoost overview As in all boosting classifiers, the final classification function is of the form :f(\boldsymbol) = \sum_^ \alpha_j h_j(\boldsymbol), where \alpha_j are non-negative weightings for ''weak'' classifiers h_j: \mathcal \to \. Each individual weak classifier h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Early Stopping
In machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an iterative method, such as gradient descent. Such methods update the learner so as to make it better fit the training data with each iteration. Up to a point, this improves the learner's performance on data outside of the training set. Past that point, however, improving the learner's fit to the training data comes at the expense of increased generalization error. Early stopping rules provide guidance as to how many iterations can be run before the learner begins to over-fit. Early stopping rules have been employed in many different machine learning methods, with varying amounts of theoretical foundation. Background This section presents some of the basic machine-learning concepts required for a description of early stopping methods. Overfitting Machine learning algorithms train a model based on a finite set of training data. During this training, the model is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robert Schapire
Robert Elias Schapire is an American computer scientist, former David M. Siegel '83 Professor in the computer science department at Princeton University, and has recently moved to Microsoft Research. His primary specialty is theoretical and applied machine learning. His work led to the development of the boosting ensemble algorithm used in machine learning. His PhD dissertation, ''The design and analysis of efficient learning algorithms'', won him the ACM Doctoral Dissertation Award in 1991. Together with Yoav Freund, he invented the AdaBoost algorithm in 1996. They both received the Gödel prize in 2003 for this work. In 2014, Schapire was elected a member of the National Academy of Engineering for his contributions to machine learning through the invention and development of boosting algorithms. In 2016, he was elected to the National Academy of Sciences.. Personal life His son, Zachary Schapire, recently graduated from his alma mater, Brown University. His daughter, Jeni S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gödel Prize
The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory (ACM SIGACT). The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the " P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time. The Gödel Prize has been awarded since 1993. The prize is awarded either at STOC (ACM Symposium on Theory of Computing, one of the main North American conferences in theoretical computer science) or ICALP (International Colloquium on Automata, Languages and Programming, one of the main European conferences in the field). To be eligible for the prize, a paper must be published ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decision Stump
A decision stump is a machine learning model consisting of a one-level decision tree. That is, it is a decision tree with one internal node (the root) which is immediately connected to the terminal nodes (its leaves). A decision stump makes a prediction based on the value of just a single input feature. Sometimes they are also called 1-rules. Depending on the type of the input feature, several variations are possible. For nominal features, one may build a stump which contains a leaf for each possible feature value or a stump with the two leaves, one of which corresponds to some chosen category, and the other leaf to all the other categories.This is what has been implemented in Weka's DecisionStump classifier. For binary features these two schemes are identical. A missing value may be treated as a yet another category. For continuous features, usually, some threshold feature value is selected, and the stump contains two leaves — for values below and above the threshold. However, r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yoav Freund
Joab (Hebrew Modern: ''Yōʼav'', Tiberian: ''Yōʼāḇ'') the son of Zeruiah, was the nephew of King David and the commander of his army, according to the Hebrew Bible. Name The name Joab is, like many other Hebrew names, theophoric - derived from YHVH (), the name of the God of Israel, and the Hebrew word 'av' (), meaning 'father'. It therefore means 'YHVH sfather'. Life Joab was the son of Zeruiah, a sister of king David (1 Chronicles 2:15-16). According to Josephus (Antiquities VII, 1, 3) his father was called Suri.Flavius Josephus, ''Antiquities of the Jews''Book VII, Chapter 1, 3 Joab had two brothers, Abishai and Asahel. Asahel was killed by Abner in combat, for which Joab took revenge by murdering Abner against David's wishes and shortly after David and Abner had secured peace between the House of David and the House of Saul (2 Samuel 2:13-3:21; 3:27). While 2 Samuel 3:27 explicitly states that Joab killed Abner "to avenge the blood of his brother Asahel", Jos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |