840 (number)
   HOME
*





840 (number)
840 is the natural number following 839 and preceding 841. Mathematical Properties *It is an even number. *It is a practical number. *It is a congruent number. *It is a highly composite number, with 32 divisors : 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840. Since the sum of its divisors (excluding the number itself) 2040 > 840 *it is an abundant number and also a superabundant number, *It is an idoneal number, *It is the least common multiple of 1, 2, 3, 4, 5, 6, 7, 8. *It is the largest number ''k'' such that all coprime quadratic residues modulo ''k'' are squares. In this case, they are 1, 121, 169, 289, 361 and 529. *It is an evil number. *It is a palindrome number and a repdigit In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system (often implicitly decimal). The word is a portmanteau of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Even Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Practical Number
In number theory, a practical number or panarithmic number is a positive integer n such that all smaller positive integers can be represented as sums of distinct divisors of n. For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2. The sequence of practical numbers begins Practical numbers were used by Fibonacci in his Liber Abaci (1202) in connection with the problem of representing rational numbers as Egyptian fractions. Fibonacci does not formally define practical numbers, but he gives a table of Egyptian fraction expansions for fractions with practical denominators.. The name "practical number" is due to . He noted that "the subdivisions of money, weights, and measures involve numbers like 4, 12, 16, 20 and 28 which are usually supposed to be so inconvenient as to dese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Congruent Number
In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides. A more general definition includes all positive rational numbers with this property. The sequence of (integer) congruent numbers starts with :5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, ... For example, 5 is a congruent number because it is the area of a (20/3, 3/2, 41/6) triangle. Similarly, 6 is a congruent number because it is the area of a (3,4,5) triangle. 3 and 4 are not congruent numbers. If is a congruent number then is also a congruent number for any natural number (just by multiplying each side of the triangle by ), and vice versa. This leads to the observation that whether a nonzero rational number is a congruent number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Highly Composite Number
__FORCETOC__ A highly composite number is a positive integer with more divisors than any smaller positive integer has. The related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. The late mathematician Jean-Pierre Kahane has suggested that Plato must have known about highly composite numbers as he deliberately chose 5040 as the ideal number of citizens in a city as 5040 has more divisors than any numbers less than it. Ramanujan wrote and titled his paper on the subject in 1915. Examples The initial or smallest 38 highly composite numbers are listed in the table below . The number of divisors is given in the column labeled ''d''(''n''). Asterisks indicate superior highly composite numbers. The divisors of the first 15 highly composite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abundant Number
In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example. Definition A number ''n'' for which the ''sum'' ''of'' ''divisors'' ''σ''(''n'') > 2''n'', or, equivalently, the sum of proper divisors (or aliquot sum) ''s''(''n'') > ''n''. Abundance is the value ''σ''(''n'') − ''2n'' (or ''s''(''n'') − ''n''). Examples The first 28 abundant numbers are: :12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, ... . For example, the proper divisors of 24 are 1, 2, 3, 4, 6, 8, and 12, whose sum is 36. Because 36 is greater than 24, the number 24 is abundant. Its abundance is 36 − 24 = 12. Prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superabundant Number
In mathematics, a superabundant number (sometimes abbreviated as SA) is a certain kind of natural number. A natural number ''n'' is called superabundant precisely when, for all ''m'' < ''n'' :\frac 6/5. Superabundant numbers were defined by . Unknown to Alaoglu and Erdős, about 30 pages of Ramanujan's 1915 paper "Highly Composite Numbers" were suppressed. Those pages were finally published in The Ramanujan Journal 1 (1997), 119–153. In section 59 of that paper, Ramanujan defines generalized highly composite numbers, which include the superabundant numbers. Properties proved that if ''n'' is superabundant, then there exist a ''k'' and ''a''1, ''a''2, ..., ''a''''k'' such that :n=\prod_^k (p_i)^ where ''p''i is the ''i''-th prime number, and :a_1\geq a_2\geq\dotsb\geq a_k\geq 1. That is, they proved that if ''n'' is superabundant, the prime decomposition of ''n'' has non-increasing exponents (the exponent of a larger prime is never more than that a smaller prime) and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idoneal Number
In mathematics, Leonhard Euler, Euler's idoneal numbers (also called suitable numbers or convenient numbers) are the positive integers ''D'' such that any integer expressible in only one way as ''x''2 ± ''Dy''2 (where ''x''2 is relatively prime to ''Dy''2) is a prime power or twice a prime power. In particular, a number that has two distinct representations as a sum of two squares is Euler's factorization method, composite. Every idoneal number generates a set containing infinitely many primes and missing infinitely many other primes. Definition A positive integer ''n'' is idoneal if and only if it cannot be written as ''ab'' + ''bc'' + ''ac'' for distinct positive integers ''a, b'', and ''c''. It is sufficient to consider the set ; if all these numbers are of the form , , or ''2''s for some integer s, where is a prime, then is idoneal. Conjecturally complete listing The 65 idoneal numbers found by Leonhard Euler and Carl Friedrich Gauss and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Common Multiple
In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers ''a'' and ''b'', usually denoted by lcm(''a'', ''b''), is the smallest positive integer that is divisible by both ''a'' and ''b''. Since division of integers by zero is undefined, this definition has meaning only if ''a'' and ''b'' are both different from zero. However, some authors define lcm(''a'',0) as 0 for all ''a'', since 0 is the only common multiple of ''a'' and 0. The lcm is the "lowest common denominator" (lcd) that can be used before fractions can be added, subtracted or compared. The least common multiple of more than two integers ''a'', ''b'', ''c'', . . . , usually denoted by lcm(''a'', ''b'', ''c'', . . .), is also well defined: It is the smallest positive integer that is divisible by each of ''a'', ''b'', ''c'', . . . Overview A multiple of a number is the product of that number and an integer. For example, 10 is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Residue
In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that: :x^2\equiv q \pmod. Otherwise, ''q'' is called a quadratic nonresidue modulo ''n''. Originally an abstract mathematical concept from the branch of number theory known as modular arithmetic, quadratic residues are now used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and states that if the context makes it clear, the adjective "quadratic" may be dropped. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Evil Number
In number theory, an evil number is a non-negative integer that has an even Hamming weight, number of 1s in its Binary number, binary expansion. These numbers give the positions of the zero values in the Thue–Morse sequence, and for this reason they have also been called the Thue–Morse set. Non-negative integers that are not evil are called odious numbers. Examples The first evil numbers are: :0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39 ... Equal sums The partition of the non-negative integers into the odious and evil numbers is the unique partition of these numbers into two sets that have equal multisets of pairwise sums. As 19th-century mathematician Eugène Prouhet showed, the partition into evil and odious numbers of the numbers from 0 to 2^k-1, for any k, provides a solution to the Prouhet–Tarry–Escott problem of finding sets of numbers whose sums of powers are equal up to the kth power. In computer science In computer science, an evil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Palindrome Number
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16461) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palindromic'' is derived from palindrome, which refers to a word (such as ''rotor'' or ''racecar'') whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers (in decimal) are: : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, … . Palindromic numbers receive most attention in the realm of recreational mathematics. A typical problem asks for numbers that possess a certain property ''and'' are palindromic. For instance: * The palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, ... . * The palindromic square numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ... . It is obvious that in any base there are infinitely many palindro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]