In
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
, a practical number or panarithmic number is a positive integer
such that all smaller positive integers can be represented as sums of distinct
divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
s of
. For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
The sequence of practical numbers begins
Practical numbers were used by
Fibonacci
Fibonacci (; also , ; – ), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western ...
in his
Liber Abaci
''Liber Abaci'' (also spelled as ''Liber Abbaci''; "The Book of Calculation") is a historic 1202 Latin manuscript on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci.
''Liber Abaci'' was among the first Western books to describe ...
(1202) in connection with the problem of representing rational numbers as
Egyptian fractions. Fibonacci does not formally define practical numbers, but he gives a table of Egyptian fraction expansions for fractions with practical denominators.
[.]
The name "practical number" is due to . He noted that "the subdivisions of money, weights, and measures involve numbers like 4, 12, 16, 20 and 28 which are usually supposed to be so inconvenient as to deserve replacement by powers of 10." His partial classification of these numbers was completed by and . This characterization makes it possible to determine whether a number is practical by examining its prime factorization. Every even
perfect number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number.
T ...
and every
power of two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer as the exponent.
In a context where only integers are considered, is restricted to non-negative ...
is also a practical number.
Practical numbers have also been shown to be analogous with
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s in many of their properties.
Characterization of practical numbers
The original characterisation by stated that a practical number cannot be a
deficient number
In number theory, a deficient number or defective number is a number ''n'' for which the sum of divisors of ''n'' is less than 2''n''. Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than ''n''. For ex ...
, that is one of which the sum of all divisors (including 1 and itself) is less than twice the number unless the deficiency is one. If the ordered set of all divisors of the practical number
is
with
and
, then Srinivasan's statement can be expressed by the inequality
.
In other words, the ordered sequence of all divisors
of a practical number has to be a
complete sub-sequence.
This partial characterization was extended and completed by and who showed that it is straightforward to determine whether a number is practical from its
prime factorization.
A positive integer greater than one with prime factorization
(with the primes in sorted order