HOME

TheInfoList



OR:

In
computer network A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections ar ...
ing, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages (transported as datagrams in packets) to other hosts on an
Internet Protocol The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet. ...
(IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths. UDP uses a simple connectionless communication model with a minimum of protocol mechanisms. UDP provides
checksum A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify dat ...
s for data integrity, and port numbers for addressing different functions at the source and destination of the datagram. It has no handshaking dialogues, and thus exposes the user's program to any unreliability of the underlying network; there is no guarantee of delivery, ordering, or duplicate protection. If error-correction facilities are needed at the network interface level, an application may instead use
Transmission Control Protocol The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is common ...
(TCP) or
Stream Control Transmission Protocol The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the p ...
(SCTP) which are designed for this purpose. UDP is suitable for purposes where error checking and correction are either not necessary or are performed in the application; UDP avoids the overhead of such processing in the protocol stack. Time-sensitive applications often use UDP because dropping packets is preferable to waiting for packets delayed due to retransmission, which may not be an option in a real-time system. The protocol was designed by
David P. Reed David Patrick Reed (born January 31, 1952) is an American computer scientist, educated at the Massachusetts Institute of Technology, known for a number of significant contributions to computer networking and wireless communications networks. He ...
in 1980 and formally defined in .


Attributes

UDP is a simple message-oriented transport layer protocol that is documented in . Although UDP provides integrity verification (via
checksum A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify dat ...
) of the header and payload,Clark, M.P. (2003). ''Data Networks IP and the Internet, 1st ed''. West Sussex, England: John Wiley & Sons Ltd. it provides no guarantees to the upper layer protocol for message delivery and the UDP layer retains no state of UDP messages once sent. For this reason, UDP sometimes is referred to as '' Unreliable Datagram Protocol''. If transmission reliability is desired, it must be implemented in the user's application. A number of UDP's attributes make it especially suited for certain applications. * It is ''transaction-oriented'', suitable for simple query-response protocols such as the
Domain Name System The Domain Name System (DNS) is a hierarchical and distributed naming system for computers, services, and other resources in the Internet or other Internet Protocol (IP) networks. It associates various information with domain names assigned ...
or the Network Time Protocol. * It provides '' datagrams'', suitable for modeling other protocols such as IP tunneling or remote procedure call and the Network File System. * It is ''simple'', suitable for
bootstrapping In general, bootstrapping usually refers to a self-starting process that is supposed to continue or grow without external input. Etymology Tall boots may have a tab, loop or handle at the top known as a bootstrap, allowing one to use fingers ...
or other purposes without a full protocol stack, such as the DHCP and Trivial File Transfer Protocol. * It is ''stateless'', suitable for very large numbers of clients, such as in
streaming media Streaming media is multimedia that is delivered and consumed in a continuous manner from a source, with little or no intermediate storage in network elements. ''Streaming'' refers to the delivery method of content, rather than the content it ...
applications such as IPTV. * The ''lack of retransmission delays'' makes it suitable for real-time applications such as
Voice over IP Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for the delivery of voice communications and multimedia sessions over Internet Protocol (IP) networks, such as the Internet. The terms Interne ...
, online games, and many protocols using Real Time Streaming Protocol. * Because it supports multicast, it is suitable for broadcast information such as in many kinds of service discovery and shared information such as Precision Time Protocol and Routing Information Protocol.


Ports

Applications can use
datagram socket A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming ...
s to establish host-to-host communications. An application binds a socket to its endpoint of data transmission, which is a combination of an IP address and a
port A port is a maritime facility comprising one or more wharves or loading areas, where ships load and discharge cargo and passengers. Although usually situated on a sea coast or estuary, ports can also be found far inland, such as ...
. In this way, UDP provides application multiplexing. A port is a software structure that is identified by the port number, a 16-bit integer value, allowing for port numbers between 0 and 65535. Port 0 is reserved but is a permissible source port value if the sending process does not expect messages in response. The Internet Assigned Numbers Authority (IANA) has divided port numbers into three ranges.Forouzan, B.A. (2000). ''TCP/IP: Protocol Suite, 1st ed''. New Delhi, India: Tata McGraw-Hill Publishing Company Limited. Port numbers 0 through 1023 are used for common, well-known services. On Unix-like
operating system An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
s, using one of these ports requires
superuser In computing, the superuser is a special user account used for system administration. Depending on the operating system (OS), the actual name of this account might be root, administrator, admin or supervisor. In some cases, the actual name of t ...
operating permission. Port numbers 1024 through 49151 are the registered ports used for IANA-registered services. Ports 49152 through 65535 are dynamic ports that are not officially designated for any specific service, and may be used for any purpose. These may also be used as ephemeral ports, which software running on the host may use to dynamically create communications endpoints as needed.


UDP datagram structure

A UDP datagram consists of a datagram ''header'' followed by a ''data'' section (the payload data for the application). The UDP datagram header consists of 4 fields, each of which is 2 bytes (16 bits): The use of the ''checksum'' and ''source port'' fields is optional in IPv4 (pink background in table). In IPv6 only the ''source port'' field is optional. ; Source port number : This field identifies the sender's port, when used, and should be assumed to be the port to reply to if needed. If not used, it should be zero. If the source host is the client, the port number is likely to be an ephemeral port. If the source host is the server, the port number is likely to be a well-known port number from 0 to 1023. ; Destination port number : This field identifies the receiver's port and is required. Similar to source port number, if the client is the destination host then the port number will likely be an ephemeral port number and if the destination host is the server then the port number will likely be a well-known port number. ; Length : This field specifies the length in bytes of the UDP header and UDP data. The minimum length is 8 bytes, the length of the header. The field size sets a theoretical limit of 65,535 bytes (8-byte header + 65,527 bytes of data) for a UDP datagram. However the actual limit for the data length, which is imposed by the underlying IPv4 protocol, is 65,507 bytes (65,535 bytes − 8-byte UDP header − 20-byte IP header). : Using IPv6 jumbograms it is possible to have UDP datagrams of size greater than 65,535 bytes. specifies that the length field is set to zero if the length of the UDP header plus UDP data is greater than 65,535. ; Checksum : The
checksum A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify dat ...
field may be used for error-checking of the header and data. This field is optional in IPv4, and mandatory in IPv6. The field carries all-zeros if unused.


Checksum computation

The method used to compute the checksum is defined in , and efficient calculation is discussed in : In other words, all 16-bit words are summed using one's complement arithmetic. Add the 16-bit values up. On each addition, if a carry-out (17th bit) is produced, swing that 17th carry bit around and add it to the least significant bit of the running total. Finally, the sum is then one's complemented to yield the value of the UDP checksum field. If the checksum calculation results in the value zero (all 16 bits 0) it should be sent as the one's complement (all 1s) as a zero-value checksum indicates no checksum has been calculated. In this case, any specific processing is not required at the receiver, because all 0s and all 1s are equal to zero in 1's complement arithmetic. The differences between IPv4 and
IPv6 Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. I ...
are in the pseudo header used to compute the checksum, and that the checksum is not optional in IPv6.


IPv4 pseudo header

When UDP runs over IPv4, the checksum is computed using a "pseudo header" that contains some of the same information from the real IPv4 header. The pseudo header is not the real IPv4 header used to send an IP packet, it is used only for the checksum calculation. The source and destination addresses are those in the IPv4 header. The protocol is that for UDP (see List of IP protocol numbers): 17 (0x11). The UDP length field is the length of the UDP header and data. The field data stands for the transmitted data. UDP checksum computation is optional for IPv4. If a checksum is not used it should be set to the value zero.


IPv6 pseudo header

When UDP runs over IPv6, the checksum is mandatory. As IPv6 has larger addresses and a different header lay-out, the method used to compute it is changed accordingly: When computing the checksum, again a pseudo header is used that mimics the real IPv6 header: The source address is the one in the IPv6 header. The destination address is the final destination; if the IPv6 packet does not contain a Routing header, that will be the destination address in the IPv6 header; otherwise, at the originating node, it will be the address in the last element of the Routing header, and, at the receiving node, it will be the destination address in the IPv6 header. The value of the Next Header field is the protocol value for UDP: 17. The UDP length field is the length of the UDP header and data.


Reliability and congestion control

Lacking reliability, UDP applications may encounter some packet loss, reordering, errors or duplication. If using UDP, the end-user applications must provide any necessary handshaking such as real-time confirmation that the message has been received. Applications, such as TFTP, may add rudimentary reliability mechanisms into the application layer as needed. If an application requires a high degree of reliability, a protocol such as the
Transmission Control Protocol The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is common ...
may be used instead. Most often, UDP applications do not employ reliability mechanisms and may even be hindered by them.
Streaming media Streaming media is multimedia that is delivered and consumed in a continuous manner from a source, with little or no intermediate storage in network elements. ''Streaming'' refers to the delivery method of content, rather than the content it ...
, real-time multiplayer games and
voice over IP Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for the delivery of voice communications and multimedia sessions over Internet Protocol (IP) networks, such as the Internet. The terms Interne ...
(VoIP) are examples of applications that often use UDP. In these particular applications, loss of packets is not usually a fatal problem. In VoIP, for example, latency and jitter are the primary concerns. The use of TCP would cause jitter if any packets were lost as TCP does not provide subsequent data to the application while it is requesting re-sending of the missing data.


Applications

Numerous key Internet applications use UDP, including: the
Domain Name System The Domain Name System (DNS) is a hierarchical and distributed naming system for computers, services, and other resources in the Internet or other Internet Protocol (IP) networks. It associates various information with domain names assigned ...
(DNS), the Simple Network Management Protocol (SNMP), the Routing Information Protocol (RIP) and the Dynamic Host Configuration Protocol (DHCP). Voice and video traffic is generally transmitted using UDP. Real-time video and audio streaming protocols are designed to handle occasional lost packets, so only slight degradation in quality occurs, rather than large delays if lost packets were retransmitted. Because both TCP and UDP run over the same network, in the mid-2000s a few businesses found that an increase of UDP traffic from these real-time applications slightly hindered the performance of applications using TCP such as point of sale, accounting, and
database In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spa ...
systems (when TCP detects packet loss, it will throttle back its data rate usage). Some VPN systems such as OpenVPN may use UDP and perform error checking at the application level while implementing reliable connections.
QUIC QUIC (pronounced "quick") is a general-purpose transport layer network protocol initially designed by Jim Roskind at Google, implemented, and deployed in 2012, announced publicly in 2013 as experimentation broadened, and described at an IETF meet ...
is a transport protocol built on top of UDP. QUIC provides a reliable and secure connection. HTTP/3 uses QUIC as opposed to earlier versions of HTTPS which use a combination of
TCP TCP may refer to: Science and technology * Transformer coupled plasma * Tool Center Point, see Robot end effector Computing * Transmission Control Protocol, a fundamental Internet standard * Telephony control protocol, a Bluetooth communication s ...
and
TLS TLS may refer to: Computing * Transport Layer Security, a cryptographic protocol for secure computer network communication * Thread level speculation, an optimisation on multiprocessor CPUs * Thread-local storage, a mechanism for allocating vari ...
to ensure reliability and security respectively. This means that HTTP/3 uses a single handshake to set up a connection, rather than having two separate handshakes for TCP and TLS, meaning the overall time to establish a connection is reduced.


Comparison of UDP and TCP

Transmission Control Protocol The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is common ...
is a connection-oriented protocol and requires handshaking to set up end-to-end communications. Once a connection is set up, user data may be sent bi-directionally over the connection. * ''Reliable'' – TCP manages message acknowledgment, retransmission and timeouts. Multiple attempts to deliver the message are made. If data gets lost along the way, data will be re-sent. In TCP, there's either no missing data, or, in case of multiple timeouts, the connection is dropped. * ''Ordered'' – If two messages are sent over a connection in sequence, the first message will reach the receiving application first. When data segments arrive in the wrong order, TCP buffers the out-of-order data until all data can be properly re-ordered and delivered to the application. * ''Heavyweight'' – TCP requires three packets to set up a socket connection before any user data can be sent. TCP handles reliability and congestion control. * ''Streaming'' – Data is read as a
byte The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit ...
stream, no distinguishing indications are transmitted to signal message (segment) boundaries. User Datagram Protocol is a simpler message-based connectionless protocol. Connectionless protocols do not set up a dedicated end-to-end connection. Communication is achieved by transmitting information in one direction from source to destination without verifying the readiness or state of the receiver. * ''Unreliable'' – When a UDP message is sent, it cannot be known if it will reach its destination; it could get lost along the way. There is no concept of acknowledgment, retransmission, or timeout. * ''Not ordered'' – If two messages are sent to the same recipient, the order in which they arrive cannot be guaranteed. * ''Lightweight'' – There is no ordering of messages, no tracking connections, etc. It is a very simple transport layer designed on top of IP. * ''Datagrams'' – Packets are sent individually and are checked for integrity on arrival. Packets have definite boundaries which are honored upon receipt; a read operation at the receiver socket will yield an entire message as it was originally sent. * ''No congestion control'' – UDP itself does not avoid congestion. Congestion control measures must be implemented at the application level or in the network. * ''Broadcasts'' – being connectionless, UDP can broadcast - sent packets can be addressed to be receivable by all devices on the subnet. * ''Multicast'' – a multicast mode of operation is supported whereby a single datagram packet can be automatically routed without duplication to a group of subscribers.


Standards

* – User Datagram Protocol * – Internet Protocol, Version 6 (IPv6) Specification * – IPv6 Jumbograms * – Management Information Base for the UDP * – UDP Usage Guidelines


See also

*
Comparison of transport layer protocols In computer networking, the transport layer is a conceptual division of methods in the Abstraction layer, layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer p ...
*
Datagram Transport Layer Security Datagram Transport Layer Security (DTLS) is a communications protocol providing security to datagram-based applications by allowing them to communicate in a way designed to prevent eavesdropping, tampering, or message forgery. The DTLS protoc ...
(DTLS) * List of TCP and UDP port numbers * Micro Transport Protocol (μTP) * Reliable Data Protocol (RDP) *
Reliable User Datagram Protocol In computer networking, the Reliable User Datagram Protocol (RUDP) is a transport layer protocol designed at Bell Labs for the Plan 9 operating system. It aims to provide a solution where UDP is too primitive because guaranteed-order packet d ...
(RUDP) * UDP-based Data Transfer Protocol * UDP flood attack * UDP Helper Address * UDP-Lite – a variant that delivers packets even if they are malformed


References


External links


IANA Port Assignments

The Trouble with UDP Scanning (PDF)



UDP on MSDN Magazine Sockets and WCF


{{Authority control Internet protocols Internet Standards Transport layer protocols 1980 introductions