HOME

TheInfoList



OR:

Titanium hydride normally refers to the
inorganic compound An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''. Inorgan ...
and related nonstoichiometric materials. It is commercially available as a stable grey/black powder, which is used as an additive in the production of
Alnico Alnico is a family of iron alloys which, in addition to iron are composed primarily of aluminium (Al), nickel (Ni), and cobalt (Co), hence the acronym ''al-ni-co''. They also include copper, and sometimes titanium. Alnico alloys are ferromagnet ...
sintered magnets, in the sintering of powdered metals, the production of
metal foam Regular foamed aluminium In materials science, a metal foam is a material or structure consisting of a solid metal (frequently aluminium) with gas-filled pores comprising a large portion of the volume. The pores can be sealed (closed-cell foam) ...
, the production of powdered titanium metal and in pyrotechnics. Also known as titanium–hydrogen alloy, it is an
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
of
titanium Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
,
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, and possibly other elements. When hydrogen is the main alloying element, its content in the titanium hydride is between 0.02% and 4.0% by weight. Alloying elements intentionally added to modify the characteristics of titanium hydride include
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
,
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
,
vanadium Vanadium is a chemical element; it has Symbol (chemistry), symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an ...
, and
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
.


Production

In the commercial process for producing non-stoichiometric , titanium metal sponge is treated with hydrogen gas at atmospheric pressure at between 300-500 °C. Absorption of hydrogen is exothermic and rapid, changing the color of the sponge grey/black. The brittle product is ground to a powder, which has a composition around . In the laboratory, titanium hydride is produced by heating titanium powder under flowing hydrogen at 700 °C, the idealized equation being:M. Baudler "Hydrogen, Deuterium, Water" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 114-115. : Other methods of producing titanium hydride include electrochemical and ball milling methods.


Reactions

is unaffected by water and air. It is slowly attacked by strong acids and is degraded by hydrofluoric and hot sulfuric acids. It reacts rapidly with oxidizing agents, this reactivity leading to the use of titanium hydride in pyrotechnics. The material has been used to produce highly pure hydrogen, which is released upon heating the solid. Hydrogen release in TiH~2 starts just above 400 °C but may not be complete until the melting point of titanium metal. Titanium tritide (TiH) has been proposed for long-term storage of
tritium Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
gas.


Structure

As approaches stoichiometry, it adopts a distorted body-centered tetragonal structure, termed the ε-form with an axial ratio of less than 1. This composition is very unstable with respect to partial thermal decomposition, unless maintained under a pure hydrogen atmosphere. Otherwise, the composition rapidly decomposes at room temperature until an approximate composition of is reached. This composition adopts the fluorite structure, and is termed the δ-form, and only very slowly thermally decomposing at room temperature until an approximate composition of is reached, at which point, inclusions of the hexagonal close packed α-form, which is the same form as pure titanium, begin to appear. The evolution of the dihydride from titanium metal and hydrogen has been examined in some detail. α-Titanium has a hexagonal close packed (hcp) structure at room temperature. Hydrogen initially occupies tetrahedral interstitial sites in the titanium. As the H/Ti ratio approaches 2, the material adopts the β-form to a face centred cubic (fcc), δ-form, the H atoms eventually filling all the tetrahedral sites to give the limiting stoichiometry of . The various phases are described in the table below. If titanium hydride contains 4.0% hydrogen at less than around 40 °C then it transforms into a body-centred tetragonal (bct) structure called ε-titanium. When titanium hydrides with less than 1.3% hydrogen, known as hypoeutectoid titanium hydride are cooled, the β-titanium phase of the mixture attempts to revert to the α-titanium phase, resulting in an excess of hydrogen. One way for hydrogen to leave the β-titanium phase is for the titanium to partially transform into δ-titanium, leaving behind titanium that is low enough in hydrogen to take the form of α-titanium, resulting in an α-titanium matrix with δ-titanium inclusions. A metastable γ-titanium hydride phase has been reported. When α-titanium hydride with a hydrogen content of 0.02-0.06% is quenched rapidly, it forms into γ-titanium hydride, as the atoms "freeze" in place when the cell structure changes from hcp to fcc. γ-Titanium takes a body centred tetragonal (bct) structure. Moreover, there is no compositional change so the atoms generally retain their same neighbours.


Hydrogen embrittlement in titanium and titanium alloys

The absorption of hydrogen and the formation of titanium hydride are a source of damage to titanium and titanium alloys. This
hydrogen embrittlement Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can Permeation, permeate solid metals. O ...
process is of particular concern when titanium and alloys are used as structural materials, as in nuclear reactors. Hydrogen embrittlement manifests as a reduction in
ductility Ductility refers to the ability of a material to sustain significant plastic Deformation (engineering), deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic def ...
and eventually
spalling Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure (as in a ball ...
of titanium surfaces. The effect of hydrogen is to a large extent determined by the composition, metallurgical history and handling of the Ti and Ti alloy. CP-titanium (commercially pure: ≤99.55% Ti content) is more susceptible to hydrogen attack than pure α-titanium. Embrittlement, observed as a reduction in ductility and caused by the formation of a solid solution of hydrogen, can occur in CP-titanium at concentrations as low as 30-40 ppm. Hydride formation has been linked to the presence of iron in the surface of a Ti alloy. Hydride particles are observed in specimens of Ti and Ti alloys that have been welded, and because of this welding is often carried out under an inert gas shield to reduce the possibility of hydride formation. Ti and Ti alloys form a surface oxide layer, composed of a mixture of Ti(II), Ti(III) and Ti(IV) oxides, which offers a degree of protection to hydrogen entering the bulk. The thickness of this can be increased by
anodizing Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts. The process is called ''anodizing'' because the part to be treated forms the anode electrode of an electr ...
, a process which also results in a distinctive colouration of the material. Ti and Ti alloys are often used in hydrogen containing environments and in conditions where hydrogen is reduced electrolytically on the surface.
Pickling Pickling is the process of food preservation, preserving or extending the shelf life of food by either Anaerobic organism, anaerobic fermentation (food), fermentation in brine or immersion in vinegar. The pickling procedure typically affects t ...
, an acid bath treatment which is used to clean the surface can be a source of hydrogen.


Uses

Common applications include
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s,
pyrotechnics Pyrotechnics is the science and craft of creating fireworks, but also includes safety matches, oxygen candles, Pyrotechnic fastener, explosive bolts (and other fasteners), parts of automotive airbags, as well as gas-pressure blasting in mining, q ...
,
sports equipment Sports equipment, also called sporting goods, are the tools, materials, apparel, and gear, which varies in shapes, size, and usage in a particular sport. It includes balls, nets, rackets, protective gears like helmets, goggles, etc. Since th ...
, as a laboratory
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
, as a
blowing agent A blowing agent is a substance which is capable of producing a cellular structure via a foaming process in a variety of materials that undergo hardening or phase transition, such as polymers, plastics, and metals. They are typically applied whe ...
, and as a precursor to porous titanium. When heated as a mixture with other metals in
powder metallurgy Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes are sometimes used to reduce or eliminate the need for subtractive manufacturing, subtractive processes in ma ...
, titanium hydride releases hydrogen which serves to remove carbon and oxygen, producing a strong alloy. The
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
of titanium hydride varies based on the alloying constituents, but for pure titanium hydride it ranges between 3.76 and 4.51 g/cm3. Even in the narrow range of concentrations that make up titanium hydride, mixtures of hydrogen and titanium can form a number of different structures, with very different properties. Understanding such properties is essential to making quality titanium hydride. At
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
, the most stable form of titanium is the
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or Lattice (group), lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fract ...
(HCP) structure α-titanium. It is a fairly hard metal that can dissolve only a small concentration of hydrogen, no more than 0.20 wt% at , and only 0.02% at . If titanium hydride contains more than 0.20% hydrogen at titanium hydride-making temperatures it transforms into a
body-centred cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
(BCC) structure called β-titanium. It can dissolve considerably more hydrogen, more than 2.1% hydrogen at . If titanium hydride contains more than 2.1% at then it transforms into a face-centred cubic (FCC) structure called δ-titanium. It can dissolve even more hydrogen, as much as 4.0% hydrogen , which reflects the upper hydrogen content of titanium hydride. There are many types of
heat treating Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are al ...
processes available to titanium hydride. The most common are annealing and quenching. Annealing is the process of heating the titanium hydride to a sufficiently high temperature to soften it. This process occurs through three phases: recovery, recrystallization, and
grain growth In materials science, grain growth is the increase in size of grains (crystallites) in a material at high temperature. This occurs when recovery and recrystallisation are complete and further reduction in the internal energy can only be achieve ...
. The temperature required to anneal titanium hydride depends on the type of annealing. Annealing must be done under a hydrogen atmosphere to prevent
outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (whic ...
.


See also

*
Machinability Machinability is the ease with which a metal can be cut ( machined) permitting the removal of the material with a satisfactory finish at low cost.Degarmo, p. 542. Materials with good machinability (free-machining materials) require little power t ...


References


External links

* {{Hydrides by group
Hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
Metal hydrides Reducing agents Pyrotechnic fuels