mixture
In chemistry, a mixture is a material made up of two or more different chemical substances which can be separated by physical method. It is an impure substance made up of 2 or more elements or compounds mechanically mixed together in any proporti ...
of
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have properties that differ from those of the pure elements from which they are made.
The vast majority of metals used for commercial purposes are alloyed to improve their properties or behavior, such as increased strength, hardness or corrosion resistance. Metals may also be alloyed to reduce their overall cost, for instance alloys of
gold
Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
and
copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
.
A typical example of an alloy is 304 grade stainless steel which is commonly used for kitchen utensils, pans, knives and forks. Sometime also known as 18/8, it as an alloy consisting broadly of 74% iron, 18% chromium and 8% nickel. The chromium and nickel alloying elements add strength and hardness to the majority iron element, but their main function is to make it resistant to rust/corrosion.
In an alloy, the atoms are joined by
metallic bonding
Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be desc ...
rather than by
covalent bond
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
s typically found in chemical compounds. The alloy constituents are usually measured by mass percentage for practical applications, and in atomic fraction for basic science studies. Alloys are usually classified as substitutional or
interstitial alloy
An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have properties ...
s, depending on the atomic arrangement that forms the alloy. They can be further classified as homogeneous (consisting of a single phase), or heterogeneous (consisting of two or more phases) or
intermetallic
An intermetallic (also called intermetallic compound, intermetallic alloy, ordered intermetallic alloy, long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Inte ...
. An alloy may be a
solid solution
A solid solution, a term popularly used for metals, is a homogeneous mixture of two compounds in solid state and having a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The word "solutio ...
of metal elements (a single phase, where all metallic grains (crystals) are of the same composition) or a
mixture
In chemistry, a mixture is a material made up of two or more different chemical substances which can be separated by physical method. It is an impure substance made up of 2 or more elements or compounds mechanically mixed together in any proporti ...
of metallic phases (two or more solutions, forming a
microstructure
Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymer ...
of different crystals within the metal).
Examples of alloys include
red gold
Colored Gold is the name given to any gold that has been treated using techniques to change its natural color. Pure gold is slightly reddish yellow in color, but colored gold can come in a variety of different colors by alloying it with different ...
(
gold
Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
and
copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
),
white gold
White gold is an alloy of gold and at least one white metal, usually nickel or palladium. Like yellow gold, the purity of white gold is given in carats (karats). It is often used on jewellery.
A common white gold formulation consists of 90% wt ...
(gold and
silver
Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
),
sterling silver
Sterling silver is an alloy composed mass fraction (chemistry), by weight of 92.5% silver and 7.5% other metals, usually copper. The sterling silver silver standards, standard has a minimum millesimal fineness of 925.
''Fineness, Fine silver'' ...
(silver and copper),
steel
Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
or
silicon steel
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
(
iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
with non-metallic
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
or
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
respectively),
solder
Solder (; North American English, NA: ) is a fusible alloy, fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces aft ...
,
brass
Brass is an alloy of copper and zinc, in proportions which can be varied to achieve different colours and mechanical, electrical, acoustic and chemical properties, but copper typically has the larger proportion, generally copper and zinc. I ...
,
pewter
Pewter () is a malleable metal alloy consisting of tin (85–99%), antimony (approximately 5–10%), copper (2%), bismuth, and sometimes silver. In the past, it was an alloy of tin and lead, but most modern pewter, in order to prevent lead poi ...
,
duralumin
Duralumin (also called duraluminum, duraluminium, duralum, dural(l)ium, or dural) is a trade name for one of the earliest types of age hardening, age-hardenable aluminium–copper alloys. The term is a combination of ''Düren'' and ''aluminium'' ...
,
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals (such as phosphorus) or metalloid ...
, and amalgams.
Alloys are used in a wide variety of applications, from the steel alloys, used in everything from buildings to automobiles to surgical tools, to exotic
titanium
Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
alloys used in the aerospace industry, to beryllium-copper alloys for non-sparking tools.
Characteristics
file:Born bronze - Bronze casts.jpg, Liquid
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals (such as phosphorus) or metalloid ...
, being poured into molds during casting
An alloy is a mixture of
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s, which forms an impure substance (admixture) that retains the characteristics of a metal. An alloy is distinct from an impure metal in that, with an alloy, the added elements are well controlled to produce desirable properties, while impure metals such as
wrought iron
Wrought iron is an iron alloy with a very low carbon content (less than 0.05%) in contrast to that of cast iron (2.1% to 4.5%), or 0.25 for low carbon "mild" steel. Wrought iron is manufactured by heating and melting high carbon cast iron in an ...
are less controlled, but are often considered useful. Alloys are made by mixing two or more elements, at least one of which is a metal. This is usually called the primary metal or the base metal, and the name of this metal may also be the name of the alloy. The other constituents may or may not be metals but, when mixed with the molten base, they will be
soluble
In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.
The extent of the solubi ...
and dissolve into the mixture.
The mechanical properties of alloys will often be quite different from those of its individual constituents. A metal that is normally very soft (
malleable
Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
), such as
aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
, can be altered by alloying it with another soft metal, such as
copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
. Although both metals are very soft and
ductile
Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
, the resulting
aluminium alloy
An aluminium alloy ( UK/IUPAC) or aluminum alloy ( NA; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There ...
will have much greater
strength
Strength may refer to:
Personal trait
*Physical strength, as in people or animals
*Character strengths like those listed in the Values in Action Inventory
*The exercise of willpower
Physics
* Mechanical strength, the ability to withstand ...
. Adding a small amount of non-metallic
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
to
iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
trades its great ductility for the greater strength of an alloy called steel. Due to its very-high strength, but still substantial
toughness
In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.heat treatment
Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are a ...
, steel is one of the most useful and common alloys in modern use. By adding
chromium
Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal.
Chromium ...
to steel, its resistance to
corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
can be enhanced, creating
stainless steel
Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
, while adding
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
will alter its electrical characteristics, producing
silicon steel
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
.
file:A brass light.JPG, left, A
brass
Brass is an alloy of copper and zinc, in proportions which can be varied to achieve different colours and mechanical, electrical, acoustic and chemical properties, but copper typically has the larger proportion, generally copper and zinc. I ...
lamp
Like oil and water, a molten metal may not always mix with another element. For example, pure iron is almost completely insoluble with copper. Even when the constituents are soluble, each will usually have a saturation point, beyond which no more of the constituent can be added. Iron, for example, can hold a maximum of 6.67% carbon. Although the elements of an alloy usually must be soluble in the
liquid
Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
state, they may not always be soluble in the
solid
Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
state. If the metals remain soluble when solid, the alloy forms a
solid solution
A solid solution, a term popularly used for metals, is a homogeneous mixture of two compounds in solid state and having a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The word "solutio ...
, becoming a homogeneous structure consisting of identical crystals, called a
phase
Phase or phases may refer to:
Science
*State of matter, or phase, one of the distinct forms in which matter can exist
*Phase (matter), a region of space throughout which all physical properties are essentially uniform
*Phase space, a mathematica ...
. If as the mixture cools the constituents become insoluble, they may separate to form two or more different types of crystals, creating a heterogeneous
microstructure
Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymer ...
of different phases, some with more of one constituent than the other. However, in other alloys, the insoluble elements may not separate until after crystallization occurs. If cooled very quickly, they first crystallize as a homogeneous phase, but they are
supersaturated
In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a ...
with the secondary constituents. As time passes, the atoms of these supersaturated alloys can separate from the crystal lattice, becoming more stable, and forming a second phase that serves to reinforce the crystals internally.
A gate valve, made from ">Inconel
Some alloys, such as
electrum
Electrum is a naturally occurring alloy of gold and silver, with trace amounts of copper and other metals. Its color ranges from pale to bright yellow, depending on the proportions of gold and silver. It has been produced artificially and is ...
—an alloy of
silver
Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
and
gold
Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
—occur naturally. Meteorites are sometimes made of naturally occurring alloys of iron and
nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, but are not native to the Earth. One of the first alloys made by humans was bronze, which is a mixture of the metals
tin
Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
and copper. Bronze was an extremely useful alloy to the ancients, because it is much stronger and harder than either of its components. Steel was another common alloy. However, in ancient times, it could only be created as an accidental byproduct from the heating of iron ore in fires (
smelting
Smelting is a process of applying heat and a chemical reducing agent to an ore to extract a desired base metal product. It is a form of extractive metallurgy that is used to obtain many metals such as iron-making, iron, copper extraction, copper ...
) during the manufacture of iron. Other ancient alloys include
pewter
Pewter () is a malleable metal alloy consisting of tin (85–99%), antimony (approximately 5–10%), copper (2%), bismuth, and sometimes silver. In the past, it was an alloy of tin and lead, but most modern pewter, in order to prevent lead poi ...
, brass and
pig iron
Pig iron, also known as crude iron, is an intermediate good used by the iron industry in the production of steel. It is developed by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with si ...
. In the modern age, steel can be created in many forms.
Carbon steel
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
* no minimum content is specified or required for chromium, cobalt ...
can be made by varying only the carbon content, producing soft alloys like
mild steel
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
* no minimum content is specified or required for chromium, cobalt ...
or hard alloys like
spring steel
Spring steel is a name given to a wide range of steels used in the manufacture of different products, including swords, saw blades, springs and many more. These steels are generally low-alloy manganese, medium-carbon steel or high-carbon stee ...
.
Alloy steel
Alloy steel is steel that is Alloy, alloyed with a variety of elements in amounts between 1.0% and 50% by weight, typically to improve its List of materials properties#Mechanical properties, mechanical properties.
Types
Alloy steels divide into ...
s can be made by adding other elements, such as
chromium
Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal.
Chromium ...
,
molybdenum
Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
,
vanadium
Vanadium is a chemical element; it has Symbol (chemistry), symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an ...
or
nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, resulting in alloys such as
high-speed steel
High-speed steel (HSS or HS) is a subset of tool steels, commonly used as cutting tool material.
Compared to high- carbon steel tools, high-speed steels can withstand higher temperatures without losing their temper (hardness), allowing use of ...
or
tool steel
Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive ...
. Small amounts of
manganese
Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
are usually alloyed with most modern steels because of its ability to remove unwanted impurities, like
phosphorus
Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
,
sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
and
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, which can have detrimental effects on the alloy. However, most alloys were not created until the 1900s, such as various aluminium,
titanium
Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
,
nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, and
magnesium alloy
Magnesium alloys are mixtures of magnesium (the lightest structural metal) with other metals (called an alloy), often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structur ...
s. Some modern
superalloy
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, ...
s, such as
incoloy
Incoloy refers to a range of superalloys now produced by the Special Metals Corporation (SMC) group of companies and created with a trademark by the Inco company in 1952. Originally Inco protected these alloys by patent. In 2000, the SMC publishe ...
, inconel, and hastelloy, may consist of a multitude of different elements.
An alloy is technically an impure metal, but when referring to alloys, the term ''impurities'' usually denotes undesirable elements. Such impurities are introduced from the base metals and alloying elements, but are removed during processing. For instance, sulfur is a common impurity in steel. Sulfur combines readily with iron to form
iron sulfide
Iron sulfide or iron sulphide can refer to range of chemical compounds composed of iron and sulfur.
Minerals
By increasing order of stability:
* Iron(II) sulfide, FeS
* Greigite, Fe3S4 (cubic)
* Pyrrhotite, Fe1−xS (where x = 0 to 0.2) (monocli ...
, which is very brittle, creating weak spots in the steel.
Lithium
Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
,
sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
and
calcium
Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
are common impurities in aluminium alloys, which can have adverse effects on the
structural integrity
''Structural Integrity'' is a scientific book series covering the research field and technical view of the structural integrity and failure area. The series was established in 2017 and is published by Springer Science+Business Media. The editors-i ...
of castings. Conversely, otherwise pure-metals that contain unwanted impurities are often called "impure metals" and are not usually referred to as alloys. Oxygen, present in the air, readily combines with most metals to form
metal oxide
An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation state o ...
s; especially at higher temperatures encountered during alloying. Great care is often taken during the alloying process to remove excess impurities, using fluxes, chemical additives, or other methods of
extractive metallurgy
Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, was ...
.
Theory
Alloying a metal is done by combining it with one or more other elements. The most common and oldest alloying process is performed by heating the base metal beyond its
melting point
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
and then dissolving the solutes into the molten liquid, which may be possible even if the melting point of the solute is far greater than that of the base. For example, in its liquid state, titanium is a very strong solvent capable of dissolving most metals and elements. In addition, it readily absorbs gases like oxygen and burns in the presence of nitrogen. This increases the chance of contamination from any contacting surface, and so must be melted in vacuum induction-heating and special, water-cooled, copper
crucible
A crucible is a container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperat ...
s. However, some metals and solutes, such as iron and carbon, have very high melting-points and were impossible for ancient people to melt. Thus, alloying (in particular, interstitial alloying) may also be performed with one or more constituents in a gaseous state, such as found in a
blast furnace
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being supplied above atmospheric pressure.
In a ...
to make pig iron (liquid-gas),
nitriding
Nitriding is a heat treating process that diffusion, diffuses nitrogen into the surface of a metal to create a case-hardening, case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, alum ...
cementation process
The cementation process is an Obsolescence, obsolete technology for making steel by carburization of iron. Unlike modern steelmaking, it increased the amount of carbon in the iron. It was apparently developed before the 17th century. Derwentcot ...
used to make
blister steel
The cementation process is an obsolete technology for making steel by carburization of iron. Unlike modern steelmaking, it increased the amount of carbon in the iron. It was apparently developed before the 17th century. Derwentcote Steel Furn ...
(solid-gas). It may also be done with one, more, or all of the constituents in the solid state, such as found in ancient methods of pattern welding (solid-solid), shear steel (solid-solid), or
crucible steel
Crucible steel is steel made by melting pig iron, cast iron, iron, and sometimes steel, often along with sand, glass, ashes, and other fluxes, in a crucible. Crucible steel was first developed in the middle of the 1st millennium BCE in Sout ...
production (solid-liquid), mixing the elements via solid-state
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
.
By adding another element to a metal, differences in the size of the atoms create internal stresses in the lattice of the metallic crystals; stresses that often enhance its properties. For example, the combination of carbon with iron produces steel, which is stronger than iron, its primary element. The
electrical
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
thermal conductivity
The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1.
Heat transfer occurs at a lower rate in materials of low ...
of alloys is usually lower than that of the pure metals. The physical properties, such as
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
Young's modulus
Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
of an alloy may not differ greatly from those of its base element, but engineering properties such as
tensile strength
Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
, ductility, and
shear strength
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a mater ...
may be substantially different from those of the constituent materials. This is sometimes a result of the sizes of the
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s in the alloy, because larger atoms exert a compressive force on neighboring atoms, and smaller atoms exert a tensile force on their neighbors, helping the alloy resist deformation. Sometimes alloys may exhibit marked differences in behavior even when small amounts of one element are present. For example, impurities in semiconducting
ferromagnetic
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
alloys lead to different properties, as first predicted by White, Hogan, Suhl, Tian Abrie and Nakamura.
Unlike pure metals, most alloys do not have a single
melting point
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
, but a melting range during which the material is a mixture of
solid
Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
and
liquid
Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
phases (a slush). The temperature at which melting begins is called the
solidus
Solidus (Latin for "solid") may refer to:
* Solidus (coin)
The ''solidus'' (Latin 'solid'; : ''solidi'') or ''nomisma'' () was a highly pure gold coin issued in the Later Roman Empire and Byzantine Empire. It was introduced in the early ...
, and the temperature when melting is just complete is called the liquidus. For many alloys there is a particular alloy proportion (in some cases more than one), called either a eutectic mixture or a peritectic composition, which gives the alloy a unique and low melting point, and no liquid/solid slush transition.
Heat treatment
left, , (alpha iron">Allotropes of iron, (alpha iron and gamma iron">alpha_iron.html" ;"title="Allotropes of iron, (alpha iron">Allotropes of iron, (alpha iron and gamma iron) showing the differences in atomic arrangement
file:Photomicrograph of annealed and quenched steel, from 1911 Britannica plates 11 and 14.jpg, Photomicrographs of steel. Top photo: annealing (metallurgy), Annealed (slowly cooled) steel forms a heterogeneous, lamellar microstructure called
pearlite
Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite for ...
, consisting of the phases
cementite
Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, b ...
(light) and ferrite (dark). Bottom photo: Quenched (quickly cooled) steel forms a single phase called
martensite
Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation.
Properties
Mar ...
, in which the carbon remains trapped within the crystals, creating internal stresses
Alloying elements are added to a base metal, to induce
hardness
In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
,
toughness
In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.work hardened by creating defects in their crystal structure. These defects are created during
plastic deformation
In engineering, deformation (the change in size or shape of an object) may be ''elastic'' or ''plastic''.
If the deformation is negligible, the object is said to be ''rigid''.
Main concepts
Occurrence of deformation in engineering application ...
by hammering, bending, extruding, et cetera, and are permanent unless the metal is recrystallized. Otherwise, some alloys can also have their properties altered by
heat treatment
Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are a ...
. Nearly all metals can be softened by annealing, which recrystallizes the alloy and repairs the defects, but not as many can be hardened by controlled heating and cooling. Many alloys of aluminium, copper,
magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
, titanium, and nickel can be strengthened to some degree by some method of heat treatment, but few respond to this to the same degree as does steel.
The base metal iron of the iron-carbon alloy known as steel, undergoes a change in the arrangement (
allotropy
Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical State of matter, state, known as allotropes of the elements. Allotropes are different structural modifications o ...
) of the atoms of its crystal matrix at a certain temperature (usually between and , depending on carbon content). This allows the smaller carbon atoms to enter the interstices of the iron crystal. When this
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
happens, the carbon atoms are said to be in ''solution'' in the iron, forming a particular single, homogeneous, crystalline phase called
austenite
Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 ...
. If the steel is cooled slowly, the carbon can diffuse out of the iron and it will gradually revert to its low temperature allotrope. During slow cooling, the carbon atoms will no longer be as
soluble
In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.
The extent of the solubi ...
with the iron, and will be forced to
precipitate
In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution". The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemic ...
out of solution, nucleating into a more concentrated form of iron carbide (Fe3C) in the spaces between the pure iron crystals. The steel then becomes heterogeneous, as it is formed of two phases, the iron-carbon phase called
cementite
Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, b ...
(or
carbide
In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece.
Interstitial / Metallic carbides
The carbides of th ...
), and pure iron ferrite. Such a heat treatment produces a steel that is rather soft. If the steel is cooled quickly, however, the carbon atoms will not have time to diffuse and precipitate out as carbide, but will be trapped within the iron crystals. When rapidly cooled, a diffusionless (martensite) transformation occurs, in which the carbon atoms become trapped in solution. This causes the iron crystals to deform as the crystal structure tries to change to its low temperature state, leaving those crystals very hard but much less ductile (more brittle).
While the high strength of steel results when diffusion and precipitation is prevented (forming martensite), most heat-treatable alloys are precipitation hardening alloys, that depend on the diffusion of alloying elements to achieve their strength. When heated to form a solution and then cooled quickly, these alloys become much softer than normal, during the diffusionless transformation, but then harden as they age. The solutes in these alloys will precipitate over time, forming
intermetallic
An intermetallic (also called intermetallic compound, intermetallic alloy, ordered intermetallic alloy, long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Inte ...
phases, which are difficult to discern from the base metal. Unlike steel, in which the solid solution separates into different crystal phases (carbide and ferrite), precipitation hardening alloys form different phases within the same crystal. These intermetallic alloys appear homogeneous in crystal structure, but tend to behave heterogeneously, becoming hard and somewhat brittle.
In 1906, precipitation hardening alloys were discovered by Alfred Wilm. Precipitation hardening alloys, such as certain alloys of aluminium, titanium, and copper, are heat-treatable alloys that soften when quenched (cooled quickly), and then harden over time. Wilm had been searching for a way to harden aluminium alloys for use in machine-gun cartridge cases. Knowing that aluminium-copper alloys were heat-treatable to some degree, Wilm tried quenching a ternary alloy of aluminium, copper, and the addition of magnesium, but was initially disappointed with the results. However, when Wilm retested it the next day he discovered that the alloy increased in hardness when left to age at room temperature, and far exceeded his expectations. Although an explanation for the phenomenon was not provided until 1919,
duralumin
Duralumin (also called duraluminum, duraluminium, duralum, dural(l)ium, or dural) is a trade name for one of the earliest types of age hardening, age-hardenable aluminium–copper alloys. The term is a combination of ''Düren'' and ''aluminium'' ...
was one of the first "age hardening" alloys used, becoming the primary building material for the first
Zeppelin
A Zeppelin is a type of rigid airship named after the German inventor Ferdinand von Zeppelin () who pioneered rigid airship development at the beginning of the 20th century. Zeppelin's notions were first formulated in 1874Eckener 1938, pp. 155� ...
s, and was soon followed by many others. Because they often exhibit a combination of high strength and low weight, these alloys became widely used in many forms of industry, including the construction of modern
aircraft
An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
.
Mechanisms
Different atomic mechanisms of alloy formation, showing pure metal, substitutional, interstitial, and a combination of the two
When a molten metal is mixed with another substance, there are two mechanisms that can cause an alloy to form, called ''atom exchange'' and the ''interstitial mechanism''. The relative size of each element in the mix plays a primary role in determining which mechanism will occur. When the atoms are relatively similar in size, the atom exchange method usually happens, where some of the atoms composing the metallic crystals are substituted with atoms of the other constituent. This is called a ''substitutional alloy''. Examples of substitutional alloys include bronze and brass, in which some of the copper atoms are substituted with either tin or zinc atoms respectively.
In the case of the interstitial mechanism, one atom is usually much smaller than the other and can not successfully substitute for the other type of atom in the crystals of the base metal. Instead, the smaller atoms become trapped in the
interstitial site
In crystallography, interstitial sites, holes or voids are the empty space that exists between the packing of atoms (spheres) in the crystal structure.
The holes are easy to see if you try to Circle packing, pack circles together; no matter how ...
s between the atoms of the crystal matrix. This is referred to as an ''interstitial alloy''. Steel is an example of an interstitial alloy, because the very small carbon atoms fit into interstices of the iron matrix.
Stainless steel
Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
is an example of a combination of interstitial and substitutional alloys, because the carbon atoms fit into the interstices, but some of the iron atoms are substituted by nickel and chromium atoms.Dossett, Jon L.; Boyer, Howard E. (2006) ''Practical heat treating''. ASM International. pp. 1–14. .
The use of alloys by humans started with the use of meteoric iron, a naturally occurring alloy of nickel and iron. It is the main constituent of
iron meteorite
Iron meteorites, also called siderites or ferrous meteorites, are a type of meteorite that consist overwhelmingly of an iron–nickel alloy known as meteoric iron that usually consists of two mineral phases: kamacite and taenite. Most iron me ...
s. As no metallurgic processes were used to separate iron from nickel, the alloy was used as it was. Meteoric iron could be forged from a red heat to make objects such as tools, weapons, and nails. In many cultures it was shaped by cold hammering into knives and arrowheads. They were often used as anvils. Meteoric iron was very rare and valuable, and difficult for ancient people to
work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
** Working animal, an ani ...
iron ore
Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the f ...
on Earth, except for one deposit of native iron in
Greenland
Greenland is an autonomous territory in the Danish Realm, Kingdom of Denmark. It is by far the largest geographically of three constituent parts of the kingdom; the other two are metropolitan Denmark and the Faroe Islands. Citizens of Greenlan ...
, which was used by the
Inuit
Inuit (singular: Inuk) are a group of culturally and historically similar Indigenous peoples traditionally inhabiting the Arctic and Subarctic regions of North America and Russia, including Greenland, Labrador, Quebec, Nunavut, the Northwe ...
. Native copper, however, was found worldwide, along with silver, gold, and
platinum
Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
, which were also used to make tools, jewelry, and other objects since Neolithic times. Copper was the hardest of these metals, and the most widely distributed. It became one of the most important metals to the ancients. Around 10,000 years ago in the highlands of
Anatolia
Anatolia (), also known as Asia Minor, is a peninsula in West Asia that makes up the majority of the land area of Turkey. It is the westernmost protrusion of Asia and is geographically bounded by the Mediterranean Sea to the south, the Aegean ...
(Turkey), humans learned to smelt metals such as copper and
tin
Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
from
ore
Ore is natural rock or sediment that contains one or more valuable minerals, typically including metals, concentrated above background levels, and that is economically viable to mine and process. The grade of ore refers to the concentration ...
. Around 2500 BC, people began alloying the two metals to form bronze, which was much harder than its ingredients. Tin was rare, however, being found mostly in Great Britain. In the Middle East, people began alloying copper with
zinc
Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
to form brass. Ancient civilizations took into account the mixture and the various properties it produced, such as
hardness
In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
, toughness and melting point, under various conditions of
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and
work hardening
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materi ...
, developing much of the information contained in modern alloy phase diagrams. For example, arrowheads from the Chinese
Qin dynasty
The Qin dynasty ( ) was the first Dynasties of China, imperial dynasty of China. It is named for its progenitor state of Qin, a fief of the confederal Zhou dynasty (256 BC). Beginning in 230 BC, the Qin under King Ying Zheng enga ...
(around 200 BC) were often constructed with a hard bronze-head, but a softer bronze-tang, combining the alloys to prevent both dulling and breaking during use.
cinnabar
Cinnabar (; ), or cinnabarite (), also known as ''mercurblende'' is the bright scarlet to brick-red form of Mercury sulfide, mercury(II) sulfide (HgS). It is the most common source ore for refining mercury (element), elemental mercury and is t ...
for thousands of years. Mercury dissolves many metals, such as gold, silver, and tin, to form
amalgams
Amalgam most commonly refers to:
* Amalgam (chemistry), mercury alloy
* Amalgam (dentistry), material of silver tooth fillings
** Bonded amalgam, used in dentistry
Amalgam may also refer to:
* Amalgam Comics, a publisher
* Amalgam Digital, an in ...
(an alloy in a soft paste or liquid form at ambient temperature). Amalgams have been used since 200 BC in China for
gilding
Gilding is a decorative technique for applying a very thin coating of gold over solid surfaces such as metal (most common), wood, porcelain, or stone. A gilded object is also described as "gilt". Where metal is gilded, the metal below was tradi ...
objects such as
armor
Armour (Commonwealth English) or armor (American English; see American and British English spelling differences#-our, -or, spelling differences) is a covering used to protect an object, individual, or vehicle from physical injury or damage, e ...
and
mirror
A mirror, also known as a looking glass, is an object that Reflection (physics), reflects an image. Light that bounces off a mirror forms an image of whatever is in front of it, which is then focused through the lens of the eye or a camera ...
s with precious metals. The ancient Romans often used mercury-tin amalgams for gilding their armor. The amalgam was applied as a paste and then heated until the mercury vaporized, leaving the gold, silver, or tin behind. Mercury was often used in mining, to extract precious metals like gold and silver from their ores.
Egypt
Egypt ( , ), officially the Arab Republic of Egypt, is a country spanning the Northeast Africa, northeast corner of Africa and Western Asia, southwest corner of Asia via the Sinai Peninsula. It is bordered by the Mediterranean Sea to northe ...
and Mycenae, gold was often alloyed with copper to produce red-gold, or iron to produce a bright burgundy-gold. Gold was often found alloyed with silver or other metals to produce various types of colored gold. These metals were also used to strengthen each other, for more practical purposes. Copper was often added to silver to make
sterling silver
Sterling silver is an alloy composed mass fraction (chemistry), by weight of 92.5% silver and 7.5% other metals, usually copper. The sterling silver silver standards, standard has a minimum millesimal fineness of 925.
''Fineness, Fine silver'' ...
, increasing its strength for use in dishes, silverware, and other practical items. Quite often, precious metals were alloyed with less valuable substances as a means to deceive buyers. Around 250 BC, Archimedes was commissioned by the King of Syracuse, Sicily, Syracuse to find a way to check the purity of the gold in a crown, leading to the famous bath-house shouting of "Eureka!" upon the discovery of Archimedes' principle.
Pewter
The term
pewter
Pewter () is a malleable metal alloy consisting of tin (85–99%), antimony (approximately 5–10%), copper (2%), bismuth, and sometimes silver. In the past, it was an alloy of tin and lead, but most modern pewter, in order to prevent lead poi ...
covers a variety of alloys consisting primarily of tin. As a pure metal, tin is much too soft to use for most practical purposes. However, during the Bronze Age, tin was a rare metal in many parts of Europe and the Mediterranean, so it was often valued higher than gold. To make jewellery, cutlery, or other objects from tin, workers usually alloyed it with other metals to increase strength and hardness. These metals were typically lead, antimony, bismuth or copper. These solutes were sometimes added individually in varying amounts, or added together, making a wide variety of objects, ranging from practical items such as dishes, surgical tools, candlesticks or funnels, to decorative items like ear rings and hair clips.
The earliest examples of pewter come from ancient Egypt, around 1450 BC. The use of pewter was widespread across Europe, from France to Norway and Britain (where most of the ancient tin was mined) to the Near East. The alloy was also used in China and the Far East, arriving in Japan around 800 AD, where it was used for making objects like ceremonial vessels, tea canisters, or chalices used in shinto shrines.
Iron
file:Chinese fining.png, Puddling in China, . Opposite to most alloying processes, liquid pig-iron is poured from a blast furnace into a container and stirred to remove carbon, which diffuses into the air forming carbon dioxide, leaving behind a
mild steel
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
* no minimum content is specified or required for chromium, cobalt ...
to wrought iron
The first known smelting of iron began in
Anatolia
Anatolia (), also known as Asia Minor, is a peninsula in West Asia that makes up the majority of the land area of Turkey. It is the westernmost protrusion of Asia and is geographically bounded by the Mediterranean Sea to the south, the Aegean ...
, around 1800 BC. Called the bloomery, bloomery process, it produced very soft but
ductile
Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
wrought iron
Wrought iron is an iron alloy with a very low carbon content (less than 0.05%) in contrast to that of cast iron (2.1% to 4.5%), or 0.25 for low carbon "mild" steel. Wrought iron is manufactured by heating and melting high carbon cast iron in an ...
. By 800 BC, iron-making technology had spread to Europe, arriving in Japan around 700 AD. Pig iron, a very hard but brittle alloy of iron and carbon, was being produced in History of China#Shang dynasty (1600–1046 BC), China as early as 1200 BC, but did not arrive in Europe until the Middle Ages. Pig iron has a lower melting point than iron, and was used for making cast-iron. However, these metals found little practical use until the introduction of
crucible steel
Crucible steel is steel made by melting pig iron, cast iron, iron, and sometimes steel, often along with sand, glass, ashes, and other fluxes, in a crucible. Crucible steel was first developed in the middle of the 1st millennium BCE in Sout ...
around 300 BC. These steels were of poor quality, and the introduction of pattern welding, around the 1st century AD, sought to balance the extreme properties of the alloys by laminating them, to create a tougher metal. Around 700 AD, the Japanese began folding bloomery-steel and cast-iron in alternating layers to increase the strength of their swords, using clay fluxes to remove slag and impurities. This method of Japanese swordsmithing produced one of the purest steel-alloys of the ancient world.Smith, Cyril (1960) ''History of metallography''. MIT Press. pp. 2–4. .
While the use of iron started to become more widespread around 1200 BC, mainly because of interruptions in the trade routes for tin, the metal was much softer than bronze. However, very small amounts of steel, (an alloy of iron and around 1% carbon), was always a byproduct of the bloomery process. The ability to modify the hardness of steel by heat treatment had been known since 1100 BC, and the rare material was valued for the manufacture of tools and weapons. Because the ancients could not produce temperatures high enough to melt iron fully, the production of steel in decent quantities did not occur until the introduction of
blister steel
The cementation process is an obsolete technology for making steel by carburization of iron. Unlike modern steelmaking, it increased the amount of carbon in the iron. It was apparently developed before the 17th century. Derwentcote Steel Furn ...
during the Middle Ages. This method introduced carbon by heating wrought iron in charcoal for long periods of time, but the absorption of carbon in this manner is extremely slow thus the penetration was not very deep, so the alloy was not homogeneous. In 1740, Benjamin Huntsman began melting blister steel in a crucible to even out the carbon content, creating the first process for the mass production of
tool steel
Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive ...
. Huntsman's process was used for manufacturing tool steel until the early 1900s.Roberts, George Adam; Krauss, George; Kennedy, Richard and Kennedy, Richard L. (1998 ''Tool steels'' . ASM International. pp. 2–3. .
The introduction of the blast furnace to Europe in the Middle Ages meant that people could produce pig iron in much higher volumes than wrought iron. Because pig iron could be melted, people began to develop processes to reduce carbon in liquid pig iron to create steel. Puddling (metallurgy), Puddling had been used in China since the first century, and was introduced in Europe during the 1700s, where molten pig iron was stirred while exposed to the air, to remove the carbon by oxidation. In 1858, Henry Bessemer developed a process of steel-making by blowing hot air through liquid pig iron to reduce the carbon content. The Bessemer process led to the first large scale manufacture of steel.
Steel is an alloy of iron and carbon, but the term ''alloy steel'' usually only refers to steels that contain other elements— like
vanadium
Vanadium is a chemical element; it has Symbol (chemistry), symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an ...
,
molybdenum
Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
, or cobalt—in amounts sufficient to alter the properties of the base steel. Since ancient times, when steel was used primarily for tools and weapons, the methods of producing and working the metal were often closely guarded secrets. Even long after the Age of Enlightenment, the steel industry was very competitive and manufacturers went through great lengths to keep their processes confidential, resisting any attempts to scientifically analyze the material for fear it would reveal their methods. For example, the people of Sheffield, a center of steel production in England, were known to routinely bar visitors and tourists from entering town to deter industrial espionage. Thus, almost no metallurgical information existed about steel until 1860. Because of this lack of understanding, steel was not generally considered an alloy until the decades between 1930 and 1970 (primarily due to the work of scientists like William Chandler Roberts-Austen, Adolf Martens, and Edgar Bain), so "alloy steel" became the popular term for ternary and quaternary steel-alloys.
After Benjamin Huntsman developed his crucible steel in 1740, he began experimenting with the addition of elements like
manganese
Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
(in the form of a high-manganese pig-iron called ''spiegeleisen''), which helped remove impurities such as phosphorus and oxygen; a process adopted by Bessemer and still used in modern steels (albeit in concentrations low enough to still be considered carbon steel). Afterward, many people began experimenting with various alloys of steel without much success. However, in 1882, Robert Hadfield, being a pioneer in steel metallurgy, took an interest and produced a steel alloy containing around 12% manganese. Called mangalloy, it exhibited extreme hardness and toughness, becoming the first commercially viable alloy-steel. Afterward, he created silicon steel, launching the search for other possible alloys of steel.
Robert Forester Mushet found that by adding tungsten to steel it could produce a very hard edge that would resist losing its hardness at high temperatures. "R. Mushet's special steel" (RMS) became the first
high-speed steel
High-speed steel (HSS or HS) is a subset of tool steels, commonly used as cutting tool material.
Compared to high- carbon steel tools, high-speed steels can withstand higher temperatures without losing their temper (hardness), allowing use of ...
. Mushet's steel was quickly replaced by tungsten carbide steel, developed by Taylor and White in 1900, in which they doubled the tungsten content and added small amounts of chromium and vanadium, producing a superior steel for use in lathes and machining tools. In 1903, the Wright brothers used a chromium-nickel steel to make the crankshaft for their airplane engine, while in 1908 Henry Ford began using vanadium steels for parts like crankshafts and valves in his Model T Ford, due to their higher strength and resistance to high temperatures.''Metallurgy for the Non-Metallurgist'' by Harry Chandler – ASM International 1998 Page 3–5 In 1912, the Krupp Ironworks in Germany developed a rust-resistant steel by adding 21% chromium and 7% nickel, producing the first stainless steel.
Others
Due to their high reactivity, most metals were not discovered until the 19th century. A method for extracting aluminium from bauxite was proposed by Humphry Davy in 1807, using an electric arc. Although his attempts were unsuccessful, by 1855 the first sales of pure aluminium reached the market. However, as
extractive metallurgy
Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, was ...
was still in its infancy, most aluminium extraction-processes produced unintended alloys contaminated with other elements found in the ore; the most abundant of which was copper. These aluminium-copper alloys (at the time termed "aluminium bronze") preceded pure aluminium, offering greater strength and hardness over the soft, pure metal, and to a slight degree were found to be heat treatable. However, due to their softness and limited hardenability these alloys found little practical use, and were more of a novelty, until the Wright brothers used an aluminium alloy to construct the first airplane engine in 1903. During the time between 1865 and 1910, processes for extracting many other metals were discovered, such as chromium, vanadium, tungsten, iridium, cobalt, and molybdenum, and various alloys were developed.
Prior to 1910, research mainly consisted of private individuals tinkering in their own laboratories. However, as the aircraft and automotive industries began growing, research into alloys became an industrial effort in the years following 1910, as new
magnesium alloy
Magnesium alloys are mixtures of magnesium (the lightest structural metal) with other metals (called an alloy), often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structur ...
s were developed for pistons and alloy wheel, wheels in cars, and pot metal for levers and knobs, and aluminium alloys developed for airframes and aircraft skins were put into use. The Doehler Die Casting Co. of Toledo, Ohio were known for the production of ''Brastil'', a high tensile corrosion resistant bronze alloy.Woldman’s Engineering Alloys, 9th Edition 1936, American Society for Metals,
See also
* Alloy broadening
* CALPHAD
* Ideal mixture
* List of alloys
References
Bibliography
*
External links
*
*
{{Authority control
Alloys,
Metallurgy
Chemistry