Smith–Lemli–Opitz syndrome is an inborn error of cholesterol synthesis. It is an
autosomal
An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal (sex chromosome) pairs, which may have different structures. The DNA in autosomes ...
recessive
In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and ...
, multiple malformation syndrome caused by a
mutation
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
in the
enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
7-Dehydrocholesterol reductase
7-Dehydrocholesterol reductase, also known as DHCR7, is a protein that in humans is encoded by the ''DHCR7'' gene.
Function
The protein encoded by this gene is an enzyme catalyzing the production of cholesterol from 7-Dehydrocholesterol usi ...
encoded by the DHCR7 gene. It causes a broad spectrum of effects, ranging from mild
intellectual disability
Intellectual disability (ID), also known as general learning disability in the United Kingdom and formerly mental retardation, Rosa's Law, Pub. L. 111-256124 Stat. 2643(2010). is a generalized neurodevelopmental disorder characterized by signif ...
and behavioural problems to lethal malformations.
Signs and symptoms
SLOS can present itself differently in different cases, depending on the severity of the mutation and other factors. Originally, SLOS patients were classified into two categories (classic and severe) based on physical and mental characteristics, alongside other clinical features. Since the discovery of the specific biochemical defect responsible for SLOS, patients are given a severity score based on their levels of cerebral, ocular, oral, and genital defects. It is then used to classify patients as having mild, classical, or severe SLOS.
Physical characteristics
The most common facial features of SLOS include
microcephaly
Microcephaly (from New Latin ''microcephalia'', from Ancient Greek μικρός ''mikrós'' "small" and κεφαλή ''kephalé'' "head") is a medical condition involving a smaller-than-normal head. Microcephaly may be present at birth or it ...
, bitemporal narrowing (reduced distance between temples),
ptosis
Ptosis (from the Greek: πτῶσις 'falling', 'a fall', 'dropped') refers to droopiness or abnormal downward displacement of a body part or organ. Particular cases include:
* Ptosis (eyelid)
* Ptosis (chin)
* Ptosis (breasts)
* Visceroptosis, ...
, a short and upturned nose,
micrognathia
Micrognathism is a condition where the jaw is undersized. It is also sometimes called mandibular hypoplasia. It is common in infants, but is usually self-corrected during growth, due to the jaws' increasing in size. It may be a cause of abnorma ...
hypoplasia
Hypoplasia (from Ancient Greek ὑπo- ''hypo-'' 'under' + πλάσις ''plasis'' 'formation'; adjective form ''hypoplastic'') is underdevelopment or incomplete development of a tissue or organ.corpus callosum
The corpus callosum (Latin for "tough body"), also callosal commissure, is a wide, thick nerve tract, consisting of a flat bundle of commissural fibers, beneath the cerebral cortex in the brain. The corpus callosum is only found in placental ...
* cerebellar
hypoplasia
Hypoplasia (from Ancient Greek ὑπo- ''hypo-'' 'under' + πλάσις ''plasis'' 'formation'; adjective form ''hypoplastic'') is underdevelopment or incomplete development of a tissue or organ.ventricular size
* decreased
frontal lobe
The frontal lobe is the largest of the four major lobes of the brain in mammals, and is located at the front of each cerebral hemisphere (in front of the parietal lobe and the temporal lobe). It is parted from the parietal lobe by a groove b ...
size
*
polydactyly
Polydactyly or polydactylism (), also known as hyperdactyly, is an anomaly in humans and animals resulting in supernumerary fingers and/or toes. Polydactyly is the opposite of oligodactyly (fewer fingers or toes).
Signs and symptoms
In human ...
of hands or feet
* short, proximally placed thumb
* other finger malformations
*
syndactyly
Syndactyly is a condition wherein two or more digits are fused together. It occurs normally in some mammals, such as the siamang and diprotodontia, but is an unusual condition in humans. The term is from Greek σύν, ''syn'' 'together' and δά ...
of second and third toes
* ambiguous or female-like male genitalia
* congenital heart defects
* renal, pulmonary, liver and eye abnormalities
Behavioural characteristics
Certain behaviours and attributes are commonly seen among patients with SLOS. They may have low normal intelligence, and react negatively or with hypersensitivity to different sensory stimuli. This is particularly true for certain auditory and visual stimuli. Many patients show aggressiveness and
self-injurious
Self-harm is intentional behavior that is considered harmful to oneself. This is most commonly regarded as direct injury of one's own skin tissues usually without a suicidal intention. Other terms such as cutting, self-injury and self-mutilati ...
behaviours, and sleep disturbances are common. Specific behaviours resembling those of people with
autism
The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental condition (or conditions) characterized by difficulti ...
are often present as well as
hyperactivity
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by excessive amounts of inattention, hyperactivity, and impulsivity that are pervasive, impairing in multiple contexts, and otherwise age-inappr ...
, which provides genetic and biological insights into autism spectrum disorders. The autistic behaviours most characteristic of SLOS patients are opisthokinesis (an upper body movement), stretching of the upper body, and hand flicking. Autism is typically diagnosed separately from SLOS using the
DSM-V
The ''Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition'' (DSM-5), is the 2013 update to the ''Diagnostic and Statistical Manual of Mental Disorders'', the taxonomic and diagnostic tool published by the American Psychiatric ...
, and approximately 50–75% of SLOS patients meet the criteria for autism.
Other behaviours associated with SLOS can be linked directly to physical abnormalities. For example, infants often show feeding problems or feeding intolerance, and patients may require increased caloric intake due to accelerated metabolism. Recurrent infections, including ear infections and pneumonia, are also common.
Biochemical phenotype
Given that SLOS is caused by a mutation in an enzyme involved in cholesterol synthesis, the resulting biochemical characteristics may be predictable. Most patients have lowered plasma cholesterol levels ( hypocholesterolemia). However, approximately 10% may show normal cholesterol levels, and decreased concentrations of cholesterol are not solely indicative of SLOS. Increased levels of cholesterol precursors are also common in SLOS. In particular, elevated levels of 7-dehydrocholesterol are fairly specific to SLOS.
Genetics
DHCR7
The gene encoding DHCR7 (labeled as ''DHCR7'') was cloned in 1998, and has been mapped to chromosome 11q12-13. It is 14100 base pairs of DNA in length, and contains nine
exon
An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequenc ...
s, the corresponding
mRNA
In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.
mRNA is created during the ...
is 2786 base pairs in length (the remaining DNA sequence is intronic). The structure of the ''DHCR7'' rat gene is very similar to the structure of the human gene.
The highest levels of ''DHCR7'' expression have been detected in the adrenal gland, the testis, the liver and in brain tissue. Its expression is induced by decreased
sterol
Sterol is an organic compound with formula , whose molecule is derived from that of gonane by replacement of a hydrogen atom in position 3 by a hydroxyl group. It is therefore an alcohol of gonane. More generally, any compounds that contain the g ...
concentrations via sterol regulatory binding proteins (SREBP). There is also evidence that its activity may be regulated by tissue specific transcription, and alternative splicing.
As outlined above, the enzyme DHCR7 catalyzes the reduction of 7DHC to cholesterol, as well as the reduction of 7-dehydrodesmosterol to desmosterol. It requires NADPH as a cofactor for this reduction, and may involve the activity of cytochrome-P450 oxidoreductase. It is also thought to contain iron. DHCR7 is an
integral membrane protein
An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All ''transmembrane proteins'' are IMPs, but not all IMPs are transmembrane proteins. IMPs comprise a sign ...
of the endoplasmic reticulum, and computer models have predicted up to nine
transmembrane domain
A transmembrane domain (TMD) is a membrane-spanning protein domain. TMDs generally adopt an alpha helix topological conformation, although some TMDs such as those in porins can adopt a different conformation. Because the interior of the lipid b ...
s. DHCR7 is most efficient at reducing 7DHC, but it is known to reduce the carbon 7 double bond of other sterols, indicating a range of
substrate
Substrate may refer to:
Physical layers
*Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached
** Substrate (locomotion), the surface over which an organism lo ...
specificity. The human version of this enzyme is predicted to have a
molecular weight
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
isoelectric point
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also ...
of 9.05.
The
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
sequence that encodes DHCR7 is predicted to contain 475 amino acids, as well as several protein motifs. It contains multiple sterol reductase motifs, as would be expected given its function. It contains a potential sterol-sensing domain (SSD), whose function is unknown but thought to be necessary for binding sterol substrates. It also includes multiple sites of phosphorylation, including potential
protein kinase C
In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and ...
and
tyrosine kinase
A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.
Tyrosine kinases belong to a larger cl ...
sites (regulatory enzymes responsible for phosphorylation). The exact function of phosphorylating DHCR7 is yet unknown, but it is thought to be involved in the regulation of its activity.
Mutations and incidence
SLOS is an
autosomal
An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal (sex chromosome) pairs, which may have different structures. The DNA in autosomes ...
recessive
In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and ...
disorder. More than 130 different types of mutations have been identified.
Missense mutation
In genetics, a missense mutation is a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid. It is a type of nonsynonymous substitution.
Substitution of protein from DNA mutations
Missense m ...
s (single nucleotide change resulting in a code for a different amino acid) are the most common, accounting for 87.6% of the SLOS spectrum. These typically reduce the function of the enzyme but may not inhibit it completely. Much depends on the nature of the mutation (i.e. which amino acid is replaced and where). Null mutations are much less common, these mutations produce either a completely dysfunctional enzyme, or no enzyme at all. Thus, missense mutations may be more common overall because they are less lethal than nonsense mutations; nonsense mutations may simply result in spontaneous abortion.
The IVS8-1G>C is the most frequently reported mutation in ''DHCR7''. This disrupts the joining of exons eight and nine, and results in the insertion of 134
nucleotide
Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecul ...
s into the ''DHCR7'' transcript. This is a nonsense mutation, thus patients that are
homozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mo ...
for this allele are severely affected. It is thought that this mutation first occurred in the
British Isles
The British Isles are a group of islands in the North Atlantic Ocean off the north-western coast of continental Europe, consisting of the islands of Great Britain, Ireland, the Isle of Man, the Inner and Outer Hebrides, the Northern Isles (O ...
heterozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mo ...
for the allele but not affected) frequency of 1.09% for Caucasians of European heritage. The frequency of mutations differs for various ethnicities, depending on the origin of the mutation. In all Caucasian populations, this particular mutation has an estimated carrier frequency of 3%.
The next most common mutation is 278C>T, and results in a
threonine
Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
at the amino acid position 93. It is a missense mutation and tends to be associated with less severe symptoms. This mutation is the most common one seen in patients of Italian, Cuban, and Mediterranean descent.
The third most common mutation is 452G>A. This
nonsense mutation
In genetics, a nonsense mutation is a point mutation in a sequence of DNA that results in a premature stop codon, or a ''nonsense codon'' in the transcribed mRNA, and in leading to a truncated, incomplete, and usually nonfunctional protein produc ...
causes protein termination, such that the enzyme DHCR7 would not be formed. It is thought to have arisen in Southern Poland and is most common in Northern Europe.
Other mutations are less common, although appear to target certain protein domains more so than others. For example, the sterol reductase motifs are common sites of mutation. Overall, there is an estimated carrier frequency (for any DHCR7 mutation causing SLOS) of 3-4% in Caucasian populations (it is less frequent among Asian and African populations). This number indicates a hypothetical birth incidence between 1/2500 and 1/4500. However, the measured incidence is between 1/10,000 to 1/60,000 (it differs depending on heritage and descent). This is much lower than expected. This indicates that many cases of SLOS are undetected, and is likely due to either spontaneous abortion caused by severe mutations (miscarriage), or mild cases that are undiagnosed. Females lack the characteristic genital malformations that affected males have, and thus are less likely to be correctly diagnosed.
Cholesterol metabolism and function
Metabolism
Cholesterol can be obtained through the diet, but it can also be formed by metabolism in the body. Cholesterol metabolism primarily takes place in the liver, with significant amounts in the intestine as well. It should also be noted that cholesterol cannot pass the blood–brain barrier, thus within the brain, biosynthesis is the only source of cholesterol.
In humans,
cholesterol
Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell membr ...
synthesis begins with the
mevalonate pathway
The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopenteny ...
(see diagram), leading to the synthesis of farnesyl pyrophosphate (FPP). This pathway uses two
acetyl-CoA
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized fo ...
and two
NADPH
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADP ...
isopentenyl pyrophosphate
Isopentenyl pyrophosphate (IPP, isopentenyl diphosphate, or IDP) is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway (commonly called the mevalonate pathway) and in the ''non-mevalonate'' MEP pathway of i ...
(IPP) using three
ATP
ATP may refer to:
Companies and organizations
* Association of Tennis Professionals, men's professional tennis governing body
* American Technical Publishers, employee-owned publishing company
* ', a Danish pension
* Armenia Tree Project, non ...
. From there, three IPP are needed to make one FPP. The combination of two FPP leads to the formation of
squalene
Squalene is an organic compound. It is a triterpenoid with the formula C30H50. It is a colourless oil, although impure samples appear yellow. It was originally obtained from shark liver oil (hence its name, as '' Squalus'' is a genus of sharks). ...
; this represents the first committed step towards cholesterol biosynthesis. Squalene leads to the creation of lanosterol, from which there are multiple pathways that lead to cholesterol biosynthesis. The rate limiting step of cholesterol synthesis is the conversion of
3-hydroxy-3-methylglutaryl-CoA
β-Hydroxy β-methylglutaryl-CoA (HMG-CoA), also known as 3-hydroxy-3-methylglutaryl coenzyme A, is an intermediate in the mevalonate pathway, mevalonate and ketogenesis pathways. It is formed from acetyl CoA and acetoacetyl CoA by HMG-CoA synthase ...
(HMG-CoA) to mevalonate, this is an early step in the mevalonate pathway catalyzed by
HMG-CoA reductase
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, official symbol HMGCR) is the rate-controlling enzyme (NADH-dependent, ; NADPH-dependent, ) of the mevalonate pathway, the metabolic pathway that produces cholesterol and ...
.
Through a complicated series of reactions, lanosterol leads to the formation of
zymosterol
Zymosterol is an intermediate in cholesterol biosynthesis. Disregarding some intermediate compounds (e.g. 4-4-dimethylzymosterol) lanosterol can be considered a precursor of zymosterol in the cholesterol synthesis pathway. The conversion of zymost ...
. As shown in a diagram to the right, it is at this point that the pathway diverges. In humans, the main pathway leading to cholesterol is known as the Kandutsch–Russell pathway. Zymosterol is metabolized to 5α-cholesta-7,24-dien-3β-ol, then to
lathosterol
Lathosterol is a cholesterol
Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structur ...
, and then to 7-dehydrocholesterol, or 7-DHC. 7-DHC is the immediate precursor to cholesterol, and the enzyme DHCR7 is responsible for converting 7-DHC to cholesterol. DHCR7 reduces the
double bond
In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betw ...
on carbon 7 of 7-DHC, leading to the unesterified product. Mutations in this enzyme are responsible for the wide range of defects present in SLOS. In another pathway leading to cholesterol synthesis, DHCR7 is required for the reduction of 7-Dehydrodesmosterol to
desmosterol
Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. 24-dehydrocholesterol reductase catalyses the reduction of desmosterol to cholesterol. It i ...
.
Regulation
Regulation of cholesterol synthesis is complex and occurs primarily through the enzyme HMG-CoA reductase (catalyst of the rate-limiting step). It involves a
feedback
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
loop that is sensitive to cellular levels of cholesterol. The four main steps of
regulation
Regulation is the management of complex systems according to a set of rules and trends. In systems theory, these types of rules exist in various fields of biology
Biology is the scientific study of life. It is a natural science with a ...
are:
* The synthesis of the enzyme HMG-CoA reductase is controlled by sterol regulatory element binding protein (SREBP). This is a
transcription factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
that is inactive when cholesterol levels are high, and active when cholesterol levels are low. When cholesterol levels fall, SREBP is released from the nuclear membrane or
endoplasmic reticulum
The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
, it then migrates to the
nucleus
Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
* Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucl ...
and causes the transcription of the HMG-CoA reductase
gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
.
* The
translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
(creating the enzyme from the mRNA transcript) of HMG-CoA reductase is inhibited by derivatives of mevalonate and by dietary cholesterol.
* The degradation of HMG-CoA reductase is tightly controlled. The part of the enzyme that is bound to the endoplasmic reticulum senses signals, such as increased cholesterol levels, that lead to its degradation or
proteolysis
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called protease ...
.
* When HMG-CoA reductase is phosphorylated, its activity decreases. This means cholesterol synthesis is reduced when cell energy (ATP) levels are low.
Function
Cholesterol is an important
lipid
Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids incl ...
involved in metabolism, cell function, and structure. It is a structural component of the
cell membrane
The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (the ...
, such that it provides structure and regulates the fluidity of the
phospholipid bilayer
The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many ...
. Furthermore, cholesterol is a constituent in
lipid raft
The cell membrane, plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein Receptor (biochemistry), receptors organised in glycolipoprotein lipid microdomains termed lipid rafts. Their existence in cellular mem ...
s. These are congregations of
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
s and lipids (including
sphingolipid
Sphingolipids are a class of lipids containing a backbone of sphingoid bases, a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx beca ...
s and cholesterol) that float within the cell membrane, and play a role in the regulation of membrane function. Lipid rafts are more ordered or rigid than the membrane bilayer surrounding them. Their involvement in regulation stems mostly from their association with proteins; upon binding substrates, some proteins have a higher affinity for attaching to lipid rafts. This brings them in close proximity with other proteins, allowing them to affect signaling pathways. Cholesterol specifically acts as a spacer and a glue for lipid rafts; absence of cholesterol leads to the dissociation of proteins.
Given its prevalence in cell membranes, cholesterol is highly involved in certain
transport
Transport (in British English), or transportation (in American English), is the intentional movement of humans, animals, and goods from one location to another. Modes of transport include air, land ( rail and road), water, cable, pipel ...
processes. It may influence the function of
ion channel
Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
s and other membrane transporters. For example, cholesterol is necessary for the
ligand
In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ele ...
binding activity of the serotoninreceptor. In addition, it appears to be very important in
exocytosis
Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + '' cytosis''). As an active transport mechanism, exocytosis requires the use ...
. Cholesterol modulates the properties of the membrane (such as membrane curvature), and may regulate the fusion of vesicles with the cell membrane. It may also facilitate the recruitment of complexes necessary for exocytosis. Given that
neuron
A neuron, neurone, or nerve cell is an membrane potential#Cell excitability, electrically excitable cell (biology), cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous ...
s rely heavily on exocytosis for the transmission of impulses, cholesterol is a very important part of the
nervous system
In Biology, biology, the nervous system is the Complex system, highly complex part of an animal that coordinates its Behavior, actions and Sense, sensory information by transmitting action potential, signals to and from different parts of its ...
.
One particularly relevant pathway in which cholesterol takes place is the
Hedgehog signaling pathway
The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway ...
. This pathway is very important during
embryonic development
An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
, and involved in deciding the fate of cells (i.e., which tissue they need to migrate to). Hedgehog proteins are also involved in the transcription of genes that regulate cell
proliferation
Proliferation may refer to:
Weapons
*Nuclear proliferation, the spread of nuclear weapons, material, and technology
*Chemical weapon proliferation, the spread of chemical weapons, material, and technology
* Small arms proliferation, the spread of ...
and differentiation. Cholesterol is important to this pathway because it undergoes covalent bonding to Hedgehog proteins, resulting in their activation. Without cholesterol, the signaling activity is disrupted and cell differentiation may be impaired.
Cholesterol is a precursor for many important molecules. These include
bile acid
Bile acids are steroid acids found predominantly in the bile of mammals and other vertebrates. Diverse bile acids are synthesized in the liver. Bile acids are conjugated with taurine or glycine residues to give anions called bile salts.
Primary ...
s (important in processing dietary fats), oxysterols,
neurosteroids
Neurosteroids, also known as neuroactive steroids, are endogenous or exogenous steroids that rapidly alter neuronal excitability through interaction with ligand-gated ion channels and other cell surface receptors. The term ''neurosteroid'' was coin ...
(involved in neurotransmission and excitation),
glucocorticoid
Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every verte ...
s (involved in immune and inflammatory processes),
mineralocorticoid
Mineralocorticoids are a class of corticosteroids, which in turn are a class of steroid hormones. Mineralocorticoids are produced in the adrenal cortex and influence salt and water balances ( electrolyte balance and fluid balance). The primary ...
s (osmotic balance), and
sex steroid
Sex hormones, also known as sex steroids, gonadocorticoids and gonadal steroids, are steroid hormones that interact with vertebrate steroid hormone receptors. The sex hormones include the androgens, estrogens, and progestogens. Their effects ar ...
s (i.e.
estrogen
Estrogen or oestrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal a ...
and
testosterone
Testosterone is the primary sex hormone and anabolic steroid in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteris ...
; wide range of function but involved in genital development prenatally). Finally, cholesterol is a major component of
myelin
Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be l ...
, a protective layer around neurons. Myelination occurs most rapidly during prenatal development, meaning that the demand for cholesterol biosynthesis is very high.
Pathogenesis
Given that the function of
cholesterol
Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell membr ...
encompasses a very wide range, it is unlikely that the symptoms of SLOS are due to a single molecular mechanism. Some of the molecular effects are yet unknown, but could be extrapolated based on the role of cholesterol. In general, the negative effects are due to decreased levels of cholesterol and increased levels of cholesterol precursors-most notably, 7DHC. Although 7DHC is structurally similar to cholesterol, and could potentially act as a substitute, the effects of this are still being studied.
Most patients with SLOS present decreased cholesterol levels, particularly in the brain (where cholesterol levels rely primarily on new synthesis). This also means that any sterol derivatives of cholesterol would also have reduced concentrations. For example, reduced levels of
neurosteroids
Neurosteroids, also known as neuroactive steroids, are endogenous or exogenous steroids that rapidly alter neuronal excitability through interaction with ligand-gated ion channels and other cell surface receptors. The term ''neurosteroid'' was coin ...
may be seen in SLOS. These are lipids which take part in signaling within the brain, and must be produced within the brain itself. They are responsible for interacting with nuclear steroid receptors, and bind to
neurotransmitter
A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell.
Neur ...
-gated ion channels. Specifically, they modulate the effects of GABA and
NMDA
''N''-methyl--aspartic acid or ''N''-methyl--aspartate (NMDA) is an amino acid derivative that acts as a specific agonist at the NMDA receptor mimicking the action of glutamate, the neurotransmitter which normally acts at that receptor. Unlike ...
receptors, resulting in calming effects, improved memory, and more. Thus, given that some characteristics of SLOS are the opposite of these effects (hyperactivity, anxiety), a reduction in neurosteroids could influence both neurological development and behaviour.
Furthermore, as outlined above, cholesterol is an important aspect in Hedgehog signaling. With lower levels of cholesterol, hedgehog proteins would not undergo the necessary covalent modification and subsequent activation. This would result in impaired embryonic development, and may contribute to the observed physical
birth defects
A birth defect, also known as a congenital disorder, is an abnormal condition that is present at birth regardless of its cause. Birth defects may result in disabilities that may be physical, intellectual, or developmental. The disabilities ca ...
in SLOS. One particular hedgehog signaling protein,
sonic hedgehog
Sonic hedgehog protein (SHH) is encoded for by the ''SHH'' gene. The protein is named after the character ''Sonic the Hedgehog (character), Sonic the Hedgehog''.
This signaling molecule is key in regulating embryonic morphogenesis in all animals ...
(SHH), is important in the pattern of the central nervous system, facial features, and limbs. Other hedgehog proteins may be involved in the development of the genital tract and the skeleton.
The altered sterol levels in SLOS are particularly relevant to cell membranes, which are made primarily of lipids. SLOS patients may show cell membranes with abnormal properties or composition, and reduced cholesterol levels greatly affect the stability and proteins of
lipid raft
The cell membrane, plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein Receptor (biochemistry), receptors organised in glycolipoprotein lipid microdomains termed lipid rafts. Their existence in cellular mem ...
s. Despite their structural similarity, 7DHC is unable to replace cholesterol in lipid rafts. In addition, a lack of cholesterol contributes to the increased fluidity of the cell membrane, and may cause abnormal
granule
A granule is a large particle or grain. It can refer to:
* Granule (cell biology), any of several submicroscopic structures, some with explicable origins, others noted only as cell type-specific features of unknown function
** Azurophilic granul ...
secretions. All of these changes in the membrane likely contribute to changes in transport functions that are observed in SLOS. They may cause defects in IgE receptor-mediated
mast cell
A mast cell (also known as a mastocyte or a labrocyte) is a resident cell of connective tissue that contains many granules rich in histamine and heparin. Specifically, it is a type of granulocyte derived from the myeloid stem cell that is a pa ...
degranulation and
cytokine
Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in a ...
production, which are cells involved in allergic and immune responses. The NMDA receptor is affected, as well as the binding capability of the
hippocampal
The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, an ...
Exocytosis
Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + '' cytosis''). As an active transport mechanism, exocytosis requires the use ...
in
synaptic vesicle
In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impu ...
s has been shown to be reduced, likely due to impaired vesicle fusion to the cell membrane, or poor vesicle recycling. Finally, cholesterol is highly prevalent in
myelin
Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be l ...
, therefore SLOS patients show reduced myelination of the
cerebral hemisphere
The vertebrate cerebrum (brain) is formed by two cerebral hemispheres that are separated by a groove, the longitudinal fissure. The brain can thus be described as being divided into left and right cerebral hemispheres. Each of these hemispheres ...
cranial nerve
Cranial nerves are the nerves that emerge directly from the brain (including the brainstem), of which there are conventionally considered twelve pairs. Cranial nerves relay information between the brain and parts of the body, primarily to and f ...
s.
In addition to lowered levels of cholesterol, many of the symptoms shown in SLOS stem from the toxic effects of 7DHC. 7DHC is known to impair
intracellular
This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
cholesterol transport. It also increases the degradation of HMG-CoA reductase (the enzyme that catalyzes the rate-limiting step in cholesterol synthesis). 7DHC leads to novel oxysterol and
steroid
A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity; and ...
derivatives, and many of their functions or effects are yet unknown. A very important finding with respect to 7DHC is that it is the most reactive lipid for
lipid peroxidation
Lipid peroxidation is the chain of reactions of oxidative degradation of lipids. It is the process in which free radicals "steal" electrons from the lipids in cell membranes, resulting in cell damage. This process proceeds by a free radical chain ...
, and results in systemic
oxidative stress
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal re ...
. Lipid peroxidation is known to destroy membranes of both cells and membrane-bound
organelle
In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' t ...
s. The derivative of 7DHC that is used to indicate oxidative stress is 3β,5α-dihydroxy-cholest-7-en-6-one (DHCEO); it is formed from a primary product of 7DHC peroxidation, 7-DHC-5α,6α-epoxide. DHCEO is toxic to cortical neuronal and
glial cells
Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
, and accelerates their differentiation and arborization. Through oxidative stress, 7DHC is thought to be responsible for the increased
photosensitivity Photosensitivity is the amount to which an object reacts upon receiving photons, especially visible light. In medicine, the term is principally used for abnormal reactions of the skin, and two types are distinguished, photoallergy and phototoxici ...
shown in SLOS patients. Normal UVA exposure may lead to oxidative stress in skin cells. Given that 7DHC is more readily oxidized, it enhances the effects of UVA, leading to increased membrane lipid oxidation and increased production of
reactive oxygen species
In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen.
The reduction of molecular oxygen ...
(ROS).
Typically, more altered the levels of 7DHC and cholesterol lead to more severe symptoms of SLOS. The levels of these metabolites also correspond to the severity of the mutation (nonsense versus missense); some mutations of DHCR7 may still show residual cholesterol synthesis, and others may not. However, even individuals with the same mutations or genotype may still show variability in their symptoms. This may be due to maternal factors, such as the transfer of cholesterol to the fetus during pregnancy, as well as the amount of cholesterol present in the brain before the blood–brain barrier forms prenatally. The rate of accumulation and
excretion
Excretion is a process in which metabolic waste
is eliminated from an organism. In vertebrates this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks afte ...
of toxic metabolites may vary from person to person. Maternal
apolipoprotein E
Apolipoprotein E (APOE) is a protein involved in the metabolism of fats in the body of mammals. A subtype is implicated in Alzheimer's disease and cardiovascular disease.
APOE belongs to a family of fat-binding proteins called apolipoproteins. ...
has also been implicated in individual variability in SLOS, although the exact nature of this relationship is unknown. There are likely more factors contributing to the wide spectrum of effects in SLOS which have not yet been discovered.
Screening and diagnosis
Prenatally
The most characteristic biochemical indicator of SLOS is an increased concentration of 7DHC (reduced
cholesterol
Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell membr ...
levels are also typical, but appear in other disorders as well). Thus, prenatally, SLOS is diagnosed upon finding an elevated 7DHC:total sterol ratio in fetal tissues, or increased levels of 7DHC in
amniotic fluid
The amniotic fluid is the protective liquid contained by the amniotic sac of a gravid amniote. This fluid serves as a cushion for the growing fetus, but also serves to facilitate the exchange of nutrients, water, and biochemical products betwe ...
. The 7DHC:total sterol ratio can be measured at 11–12 weeks of
gestation
Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during preg ...
by
chorionic villus sampling
Chorionic villus sampling (CVS), sometimes called "chorionic ''villous'' sampling" (as "villous" is the adjectival form of the word "villus"), is a form of prenatal diagnosis done to determine chromosomal or genetic disorders in the fetus. It ...
, and elevated 7DHC in amniotic fluid can be measured by 13 weeks. Furthermore, if parental mutations are known, DNA testing of amniotic fluid or chorionic villus samples may be performed.
Amniocentesis
Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is n ...
(process of sampling amniotic fluid) and chorionic villus sampling cannot be performed until approximately 3 months into the pregnancy. Given that SLOS is a very severe syndrome, parents may want to choose to terminate their pregnancy if their fetus is affected. Amniocentesis and chorionic villus sampling leave very little time to make this decision (abortions become more difficult as the pregnancy advances), and can also pose severe risks to the mother and baby. Thus, there is a very large desire for noninvasive midgestation diagnostic tests. Examining the concentrations of
sterol
Sterol is an organic compound with formula , whose molecule is derived from that of gonane by replacement of a hydrogen atom in position 3 by a hydroxyl group. It is therefore an alcohol of gonane. More generally, any compounds that contain the g ...
s in maternal urine is one potential way to identify SLOS prenatally. During pregnancy, the fetus is solely responsible for synthesizing the cholesterol needed to produce
estriol
Estriol (E3), also spelled oestriol, is a steroid, a weak estrogen, and a minor female sex hormone. It is one of three major endogenous estrogens, the others being estradiol and estrone. Levels of estriol in women who are not pregnant are almos ...
. A fetus with SLOS cannot produce cholesterol, and may use 7DHC or 8DHC as precursors for estriol instead. This creates 7- or 8-dehydrosteroids (such as 7-dehydroestriol), which may show up in the maternal urine. These are novel metabolites due to the presence of a normally reduced
double bond
In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betw ...
at carbon 7 (caused by the inactivity of DHCR7), and may be used as indicators of SLOS. Other cholesterol derivatives which possess a double bond at the 7th or 8th position and are present in maternal urine may also be indicators of SLOS. 7- and 8-dehydropregnanetriols have been shown to be present in the urine of mothers with an affected fetus but not with an unaffected fetus, and thus are used in diagnosis. These pregnadienes originated in the fetus and traveled through the
placenta
The placenta is a temporary embryonic and later fetal organ (anatomy), organ that begins embryonic development, developing from the blastocyst shortly after implantation (embryology), implantation. It plays critical roles in facilitating nutrien ...
before reaching the mother. Their excretion indicates that neither the placenta nor the maternal organs have necessary enzymes needed to reduce the double bond of these novel metabolites.
Postnatally
If SLOS goes undetected until after birth, diagnosis may be based on the characteristic physical features as well as finding increased plasma levels of 7DHC.
There are many different ways of detecting 7DHC levels in blood plasma, one way is using the Liebermann–Burchard (LB) reagent. This is a simple
colorimetric
Colorimetry is "the science and technology used to quantify and describe physically the human color perception".
It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color ...
assay developed with the intention of use for large scale screening. When treated with the LB reagent, SLOS samples turn pink immediately and gradually become blue; normal blood samples are initially colorless and develop a faint blue color. Although this method has limitations and is not used to give a definitive diagnosis, it has appeal in that it is a much faster method than using cell cultures.
Another way of detecting 7DHC is through
gas chromatography
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, ...
, a technique used to separate and analyze compounds. Selected ion
monitoring gas chromatography/mass-spectrometry (SIM-GC/MS) is a very sensitive version of gas chromatography, and permits detection of even mild cases of SLOS. Other methods include
time-of-flight mass spectrometry
Time-of-flight mass spectrometry (TOFMS) is a method of mass spectrometry in which an ion's mass-to-charge ratio is determined by a time of flight measurement. Ions are accelerated by an electric field of known strength. This acceleration res ...
, particle-beam LC/MS, electrospray tandem MS, and ultraviolet absorbance, all of which may be used on either blood samples, amniotic fluid, or chorionic villus. Measuring levels of bile acids in patients urine, or studying DCHR7 activity in tissue culture are also common postnatal diagnostic techniques.
Treatment
Management of individuals with SLOS is complex and often requires a team of specialists. Some of the congenital malformations (cleft palate) can be corrected with surgery. Other treatments have yet to be proven successful in randomized studies, however anecdotally they appear to cause improvements.
Cholesterol supplementation
Currently, the most common form of treatment for SLOS involves dietary cholesterol supplementation. Anecdotal reports indicate that this has some benefits; it may result in increased growth, lower
irritability
Irritability (also called as crankiness) is the excitatory ability that living organisms have to respond to changes in their environment. The term is used for both the physiological reaction to stimuli and for the pathological, abnormal or excess ...
, improved sociability, less
self-injurious behaviour
Self-harm is intentional behavior that is considered harmful to oneself. This is most commonly regarded as direct injury of one's own skin tissues usually without a suicidal intention. Other terms such as cutting, self-injury and self-mutilatio ...
infection
An infection is the invasion of tissues by pathogens, their multiplication, and the reaction of host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmissible disease or communicable d ...
s, more muscle tone, less
photosensitivity Photosensitivity is the amount to which an object reacts upon receiving photons, especially visible light. In medicine, the term is principally used for abnormal reactions of the skin, and two types are distinguished, photoallergy and phototoxici ...
and fewer autistic behaviours. Cholesterol supplementation begins at a dose of 40–50 mg/kg/day, increasing as needed. It is administered either through consuming foods high in cholesterol (eggs, cream, liver), or as purified food grade cholesterol. Younger children and infants may require tube feeding. However, dietary cholesterol does not reduce the levels of 7DHC, cannot cross the blood–brain barrier, and does not appear to improve developmental outcomes. One empirical study found that cholesterol supplementation did not improve
developmental delay
Global developmental delay is an umbrella term used when children are significantly delayed in their cognitive and physical development. It can be diagnosed when a child is delayed in one or more milestones, categorised into motor skills, speech, ...
, regardless of the age at which it began. This is likely because most developmental delays stem from malformations of the brain, which dietary cholesterol cannot ameliorate due to its inability to cross the blood–brain barrier.
Simvastatin therapy
HMG-CoA reductase
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, official symbol HMGCR) is the rate-controlling enzyme (NADH-dependent, ; NADPH-dependent, ) of the mevalonate pathway, the metabolic pathway that produces cholesterol and ...
inhibitors have been examined as treatment for SLOS. Given that this
catalyzes
Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
the rate-limiting step in cholesterol synthesis, inhibiting it would reduce the buildup of toxic metabolites such as 7DHC.Simvastatin is a known inhibitor of HMG-CoA reductase, and most importantly is able to cross the blood–brain barrier. It has been reported to decrease the levels of 7DHC, as well as increase the levels of
cholesterol
Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell membr ...
. The increased cholesterol levels are due to simvastatin's effect on the expression of different genes. Simvastatin increases the expression of ''DHCR7'', likely leading to increased activity of DHCR7. It has also been shown to increase the expression of other genes involved in cholesterol synthesis and uptake. However, these benefits are dependent on the amount of residual cholesterol synthesis. Because some individuals possess less severe mutations and demonstrate some amount of DCHR7 activity, these people benefit the most from simvastatin therapy as they still have a partially functioning enzyme. For individuals that show no residual DCHR7 activity, such as those
homozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mo ...
for null alleles or mutations, simvastatin therapy may actually be toxic. This highlights the importance of identifying the specific
genotype
The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
of the SLOS patient before administering treatment. It is still unknown if simvastatin will improve the behavioural or learning deficits in SLOS.
Antioxidant supplementation
Antioxidant
Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. This can lead to polymerization and other chain reactions. They are frequently added to industrial products, such as fuels and lubricants ...
s are those which inhibit the oxidation of molecules or reduce metabolites that were previously oxidized. Given that some symptoms of SLOS are thought to result from the
peroxidation
Lipid peroxidation is the chain of reactions of oxidative degradation of lipids. It is the process in which free radicals "steal" electrons from the lipids in cell membranes, resulting in cell damage. This process proceeds by a free radical ch ...
of 7DHC and its derivatives, inhibiting this peroxidation would likely have beneficial effects. Antioxidants have been shown to increase the level of lipid transcripts in SLOS cells, these transcripts play a role in lipid (cholesterol) biosynthesis and are known to be down-regulated in SLOS. Furthermore,
vitamin E
Vitamin E is a group of eight fat soluble compounds that include four tocopherols and four tocotrienols. Vitamin E deficiency, which is rare and usually due to an underlying problem with digesting dietary fat rather than from a diet low in vitami ...
specifically is known to decrease DHCEO levels, which is an indicator of
oxidative stress
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal re ...
in SLOS, as well as present beneficial changes in gene expression. Vitamin E appears to be the most powerful antioxidant for treating SLOS, and in mouse models has reduced the levels of oxysterols in the brain. However, antioxidants have only been studied in animal models of SLOS or isolated SLOS cells. Thus, their clinical significance and negative side effects are still unknown, and their use has yet to be studied in humans.
Further considerations
When treating SLOS, a recurring issue is whether or not the intellectual and behavioural deficits are due to fixed developmental problems (i.e. fixed brain malformations), or due to ongoing abnormal sterol levels that interrupt the normal function of the brain and other tissues. If the latter is true, then treatments which change the sterol levels and ratios, particularly in the brain, will likely improve the developmental outcome of the patient. However, if the former is true, then treatment is likely to help only with symptoms and not with specific developmental deficits.
Research
The most common animal used to study SLOS is the
mouse
A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
. According to BioCyc, cholesterol biosynthesis in mice is very similar to that of humans. Most importantly, mice possess both DHCR7 (the enzyme responsible for SLOS), and
HMG-CoA reductase
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, official symbol HMGCR) is the rate-controlling enzyme (NADH-dependent, ; NADPH-dependent, ) of the mevalonate pathway, the metabolic pathway that produces cholesterol and ...
(the rate limiting step of cholesterol synthesis. Rats are similar to mice and have also been used. There are two popular ways in which animal models of SLOS are created. The first is using teratogens, the second is using genetic manipulations to create mutations in the ''DHCR7'' gene.
Teratogenic models
Teratogenic
Teratology is the study of abnormalities of physiological development in organisms during their life span. It is a sub-discipline in medical genetics which focuses on the classification of congenital abnormalities in dysmorphology. The relat ...
models are induced by feeding pregnant rats or mice inhibitors of DCHR7. Two common inhibitors are BM15766 and AY9944 . These compounds have different chemical and physical properties, but induce similar effects. AY9944 has been shown to induce
holoprosencephaly
Holoprosencephaly (HPE) is a cephalic disorder in which the prosencephalon (the forebrain of the embryo) fails to develop into two hemispheres, typically occurring between the 18th and 28th day of gestation. Normally, the forebrain is formed a ...
and sexual malformations similar to those seen in humans with SLOS. It is also known to cause impairments in the serotonin receptor, another defect commonly seen in SLOS patients. BM15766 has produced the lack of cholesterol and
bile acid
Bile acids are steroid acids found predominantly in the bile of mammals and other vertebrates. Diverse bile acids are synthesized in the liver. Bile acids are conjugated with taurine or glycine residues to give anions called bile salts.
Primary ...
synthesis that is seen in SLOS patients with
homozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mo ...
mutations. All teratogenic models can be effectively used to study SLOS; however, they present lower levels of 7-DHC and 8-DHC than are seen in humans. This can be explained by the fact that humans experience a permanent block in their DHCR7 activity, where mice and rats treated with inhibitors experience only transient blocks. Furthermore, different species of mice and rats are more resistant to teratogens, and may be less effective as models of SLOS. Teratogenic models are most commonly used to study more long-term effects of SLOS, because they survive longer than genetic models. For example, one study examined the retinal degeneration of SLOS, which in rats does not occur until at least one month after birth.
homologous recombination
Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may be ...
to disrupt ''DCHR7'' in mouse
embryonic stem cell
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they cons ...
s. Similar to what is found in humans, heterozygous mice (having only one mutated allele) were phentoypically normal, and were crossed to produce pups (young mice) homozygous for the mutated allele. Although these pups died within the first day of life due to their inability to feed, they showed characteristics similar to humans with SLOS. They had decreased levels of cholesterol, increased levels of 7- and 8DHC, showed less growth and smaller birth weights, had
craniofacial Craniofacial (''cranio-'' combining form meaning head or skull + ''-facial'' combining form referring to the facial structures grossly) is an adjective referring to the parts of the head enclosing the brain and the face.
The term is typically used ...
malformations, and less movement. Many also had a
cleft palate
A cleft lip contains an opening in the upper lip that may extend into the nose. The opening may be on one side, both sides, or in the middle. A cleft palate occurs when the palate (the roof of the mouth) contains an opening into the nose. The t ...
, and decreased neuronal responses to
glutamate
Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
. Overall however, the pups had fewer dysmorphic features than human patients with SLOS; they did not present limb, renal, adrenal or
central nervous system
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
malformations. This is explained by the fact that in rodents, maternal cholesterol can cross the
placenta
The placenta is a temporary embryonic and later fetal organ (anatomy), organ that begins embryonic development, developing from the blastocyst shortly after implantation (embryology), implantation. It plays critical roles in facilitating nutrien ...
, and actually appears to be essential for the development of the fetus. In humans, very little maternal cholesterol is transferred to the fetus. In sum, the genetic mouse model is helpful to explain the neuropathophysiology of SLOS.
Discoveries
Many discoveries in SLOS research have been made using animal models. They have been used to study different treatment techniques, including the effectiveness of simvastatin therapy. Other studies have examined behavioural characteristics while attempting to explain their underlying pathogenesis. A common finding is that mouse models of SLOS show abnormal
serotonergic
Serotonergic () or serotoninergic () means "pertaining to or affecting serotonin". Serotonin is a neurotransmitter. A synapse
In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chem ...
development, which may be at least partially responsible for the
autistic
The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental condition (or conditions) characterized by difficulti ...
behaviours seen in SLOS. Mouse models have also been used to develop diagnostic techniques; multiple studies have examined
biomarker
In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, p ...
s that result from the
oxidation
Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
of 7DHC, such as DHCEO. It is likely that as animal models are improved, they will lead to many more discoveries in SLOS research.
Eponym
It is named after David Weyhe Smith (1926–1981), an American pediatrician; Luc Lemli (1935–), a Belgian physician; and John Marius Opitz (1935–), a German-American physician. These are the researchers who first described the symptoms of SLOS.