
A prime number (or a prime) is a
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
greater than 1 that is not a
product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a
composite number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime numb ...
. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in
number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
because of the
fundamental theorem of arithmetic
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is prime or can be represented uniquely as a product of prime numbers, ...
: every natural number greater than 1 is either a prime itself or can be
factorized as a product of primes that is unique
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation "
* if and are related by , that is,
* if holds, that is,
* if the equivalence classes of and with respect to are equal.
This figure of speech ...
their order.
The property of being prime is called primality. A simple but slow
method of checking the primality of a given number , called
trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the
Miller–Rabin primality test
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen pr ...
, which is fast but has a small chance of error, and the
AKS primality test
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientist ...
, which always produces the correct answer in
polynomial time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations p ...
but is too slow to be practical. Particularly fast methods are available for numbers of special forms, such as
Mersenne number
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17t ...
s. the
largest known prime number
The largest known prime number is , a number which has 41,024,320 digits when written in the decimal system. It was found on October 12, 2024, on a cloud-based virtual machine volunteered by Luke Durant, a 36-year-old researcher from San Jose, Cali ...
is a Mersenne prime with 41,024,320
decimal digits.
There are
infinitely many primes, as
demonstrated by Euclid around 300 BC. No known simple formula separates prime numbers from composite numbers. However, the distribution of primes within the natural numbers in the large can be statistically modelled. The first result in that direction is the
prime number theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic analysis, asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by p ...
, proven at the end of the 19th century, which says roughly that the
probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
of a randomly chosen large number being prime is inversely
proportional to its number of digits, that is, to its
logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
.
Several historical questions regarding prime numbers are still unsolved. These include
Goldbach's conjecture
Goldbach's conjecture is one of the oldest and best-known list of unsolved problems in mathematics, unsolved problems in number theory and all of mathematics. It states that every even and odd numbers, even natural number greater than 2 is the ...
, that every even integer greater than 2 can be expressed as the sum of two primes, and the
twin prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime' ...
conjecture, that there are infinitely many pairs of primes that differ by two. Such questions spurred the development of various branches of number theory, focusing on
analytic or
algebraic aspects of numbers. Primes are used in several routines in
information technology
Information technology (IT) is a set of related fields within information and communications technology (ICT), that encompass computer systems, software, programming languages, data processing, data and information processing, and storage. Inf ...
, such as
public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic alg ...
, which relies on the difficulty of
factoring large numbers into their prime factors. In
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, objects that behave in a generalized way like prime numbers include
prime element
In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish ...
s and
prime ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s.
Definition and examples
A
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
(1, 2, 3, 4, 5, 6, etc.) is called a ''prime number'' (or a ''prime'') if it is greater than 1 and cannot be written as the product of two smaller natural numbers. The numbers greater than 1 that are not prime are called
composite number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime numb ...
s. In other words, is prime if items cannot be divided up into smaller equal-size groups of more than one item, or if it is not possible to arrange dots into a rectangular grid that is more than one dot wide and more than one dot high. For example, among the numbers 1 through 6, the numbers 2, 3, and 5 are the prime numbers, as there are no other numbers that divide them evenly (without a remainder). 1 is not prime, as it is specifically excluded in the definition. and are both composite.

The
divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
s of a natural number are the natural numbers that divide evenly. Every natural number has both 1 and itself as a divisor. If it has any other divisor, it cannot be prime. This leads to an equivalent definition of prime numbers: they are the numbers with exactly two positive
divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
s. Those two are 1 and the number itself. As 1 has only one divisor, itself, it is not prime by this definition. Yet another way to express the same thing is that a number is prime if it is greater than one and if none of the numbers
divides evenly.
The first 25 prime numbers (all the prime numbers less than 100) are:
:
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97 .
No
even number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers.
The ...
greater than 2 is prime because any such number can be expressed as the product . Therefore, every prime number other than 2 is an
odd number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers.
The ...
, and is called an ''odd prime''. Similarly, when written in the usual
decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of th ...
system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in 0 or 5 are divisible by 5.
The
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
of all primes is sometimes denoted by
(a
boldface
In typography, emphasis is the strengthening of words in a text with a font in a different style from the rest of the text, to highlight them. It is the equivalent of prosody stress in speech.
Methods and use
The most common methods in We ...
capital P) or by
(a
blackboard bold
Blackboard bold is a style of writing Emphasis (typography), bold symbols on a blackboard by doubling certain strokes, commonly used in mathematical lectures, and the derived style of typeface used in printed mathematical texts. The style is most ...
capital P).
History

The
Rhind Mathematical Papyrus
The Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057, pBM 10058, and Brooklyn Museum 37.1784Ea-b) is one of the best known examples of ancient Egyptian mathematics.
It is one of two well-known mathematical papyri ...
, from around 1550 BC, has
Egyptian fraction
An Egyptian fraction is a finite sum of distinct unit fractions, such as
\frac+\frac+\frac.
That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from eac ...
expansions of different forms for prime and composite numbers. However, the earliest surviving records of the study of prime numbers come from the
ancient Greek mathematicians, who called them ().
Euclid
Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
's ''
Elements'' (c. 300 BC) proves the
infinitude of primes and the
fundamental theorem of arithmetic
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is prime or can be represented uniquely as a product of prime numbers, ...
, and shows how to construct a
perfect number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfec ...
from a
Mersenne prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 1 ...
.
Another Greek invention, the
Sieve of Eratosthenes
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
It does so by iteratively marking as composite number, composite (i.e., not prime) the multiples of each prime, starting with ...
, is still used to construct lists of
Around 1000 AD, the
Islamic
Islam is an Abrahamic religions, Abrahamic monotheistic religion based on the Quran, and the teachings of Muhammad. Adherents of Islam are called Muslims, who are estimated to number Islam by country, 2 billion worldwide and are the world ...
mathematician
Ibn al-Haytham
Ḥasan Ibn al-Haytham (Latinization of names, Latinized as Alhazen; ; full name ; ) was a medieval Mathematics in medieval Islam, mathematician, Astronomy in the medieval Islamic world, astronomer, and Physics in the medieval Islamic world, p ...
(Alhazen) found
Wilson's theorem
In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of ...
, characterizing the prime numbers as the numbers that evenly divide . He also conjectured that all even perfect numbers come from Euclid's construction using Mersenne primes, but was unable to prove it. Another Islamic mathematician,
Ibn al-Banna' al-Marrakushi
Ibn al‐Bannāʾ al‐Marrākushī (), full name: Abu'l-Abbas Ahmad ibn Muhammad ibn Uthman al-Azdi al-Marrakushi () (29 December 1256 – 31 July 1321), was an Arab Muslim polymath who was active as a mathematician, astronomer, Islamic schol ...
, observed that the sieve of Eratosthenes can be sped up by considering only the prime divisors up to the square root of the upper limit.
Fibonacci
Leonardo Bonacci ( – ), commonly known as Fibonacci, was an Italians, Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages".
The name he is commonly called, ''Fibonacci ...
took the innovations from Islamic mathematics to Europe. His book ''
Liber Abaci
The or (Latin for "The Book of Calculation") was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for introducing both base-10 positional notation and the symbols known as Arabic n ...
'' (1202) was the first to describe
trial division for testing primality, again using divisors only up to the square root.
In 1640
Pierre de Fermat
Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
stated (without proof)
Fermat's little theorem
In number theory, Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . In the notation of modular arithmetic, this is expressed as
a^p \equiv a \pmod p.
For example, if and , t ...
(later proved by
Leibniz
Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many ...
and
Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
). Fermat also investigated the primality of the
Fermat number
In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a natural number, positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers ...
s , and
Marin Mersenne
Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for ...
studied the
Mersenne prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 1 ...
s, prime numbers of the form
with itself a prime.
Christian Goldbach
Christian Goldbach ( , ; 18 March 1690 – 20 November 1764) was a Prussian mathematician connected with some important research mainly in number theory; he also studied law and took an interest in and a role in the Russian court. After travel ...
formulated
Goldbach's conjecture
Goldbach's conjecture is one of the oldest and best-known list of unsolved problems in mathematics, unsolved problems in number theory and all of mathematics. It states that every even and odd numbers, even natural number greater than 2 is the ...
, that every even number is the sum of two primes, in a 1742 letter to Euler. Euler proved Alhazen's conjecture (now the
Euclid–Euler theorem
The Euclid–Euler theorem is a theorem in number theory that relates perfect numbers to Mersenne primes. It states that an even number is perfect if and only if it has the form , where is a prime number. The theorem is named after mathematician ...
) that all even perfect numbers can be constructed from Mersenne primes.
He introduced methods from
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
to this area in his proofs of the infinitude of the primes and the
divergence of the sum of the reciprocals of the primes . At the start of the 19th century, Legendre and Gauss conjectured that as tends to infinity, the number of primes up to is
asymptotic
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates Limit of a function#Limits at infinity, tends to infinity. In pro ...
to , where
is the
natural logarithm
The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
of . A weaker consequence of this high density of primes was
Bertrand's postulate
In number theory, Bertrand's postulate is the theorem that for any integer n > 3, there exists at least one prime number p with
:n < p < 2n - 2.
A less restrictive formulation is: for every , there is always at least one ...
, that for every
there is a prime between and , proved in 1852 by
Pafnuty Chebyshev
Pafnuty Lvovich Chebyshev ( rus, Пафну́тий Льво́вич Чебышёв, p=pɐfˈnutʲɪj ˈlʲvovʲɪtɕ tɕɪbɨˈʂof) ( – ) was a Russian mathematician and considered to be the founding father of Russian mathematics.
Chebysh ...
. Ideas of
Bernhard Riemann
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
in his
1859 paper on the zeta-function sketched an outline for proving the conjecture of Legendre and Gauss. Although the closely related
Riemann hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
remains unproven, Riemann's outline was completed in 1896 by
Hadamard
Jacques Salomon Hadamard (; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry, and partial differential equations.
Biography
The son of a tea ...
and
de la Vallée Poussin, and the result is now known as the
prime number theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic analysis, asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by p ...
. Another important 19th century result was
Dirichlet's theorem on arithmetic progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is al ...
, that certain
arithmetic progression
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
s contain infinitely many primes.
Many mathematicians have worked on
primality test
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating wheth ...
s for numbers larger than those where trial division is practicably applicable. Methods that are restricted to specific number forms include
Pépin's test for Fermat numbers (1877),
Proth's theorem (c. 1878), the
Lucas–Lehmer primality test (originated 1856), and the generalized
Lucas primality test.
Since 1951 all the
largest known prime
The largest known prime number is , a number which has 41,024,320 digits when written in the decimal system. It was found on October 12, 2024, on a cloud-based virtual machine volunteered by Luke Durant, a 36-year-old researcher from San Jose, Cali ...
s have been found using these tests on
computer
A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
s. The search for ever larger primes has generated interest outside mathematical circles, through the
Great Internet Mersenne Prime Search
The Great Internet Mersenne Prime Search (GIMPS) is a collaborative project of volunteers who use freely available software to search for Mersenne prime numbers.
GIMPS was founded in 1996 by George Woltman, who also wrote the Prime95 client and ...
and other
distributed computing
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers.
The components of a distributed system commu ...
projects.
[ The idea that prime numbers had few applications outside of ]pure mathematics
Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
was shattered in the 1970s when public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic alg ...
and the RSA cryptosystem were invented, using prime numbers as their basis.
The increased practical importance of computerized primality testing and factorization led to the development of improved methods capable of handling large numbers of unrestricted form. The mathematical theory of prime numbers also moved forward with the Green–Tao theorem (2004) that there are arbitrarily long arithmetic progressions of prime numbers, and Yitang Zhang
Yitang Zhang (; born February 5, 1955) is a Chinese-American mathematician primarily working on number theory and a professor of mathematics at the University of California, Santa Barbara since 2015.
Previously working at the University of New ...
's 2013 proof that there exist infinitely many prime gap
A prime gap is the difference between two successive prime numbers. The ''n''-th prime gap, denoted ''g'n'' or ''g''(''p'n'') is the difference between the (''n'' + 1)-st and the ''n''-th prime numbers, i.e.,
:g_n = p_ - p_n. ...
s of bounded size.[, pp. 18, 47.]
Primality of one
Most early Greeks did not even consider 1 to be a number,[ For a selection of quotes from and about the ancient Greek positions on the status of 1 and 2, see in particular pp. 3–4. For the Islamic mathematicians, see p. 6.] so they could not consider its primality. A few scholars in the Greek and later Roman tradition, including Nicomachus
Nicomachus of Gerasa (; ) was an Ancient Greek Neopythagorean philosopher from Gerasa, in the Roman province of Syria (now Jerash, Jordan). Like many Pythagoreans, Nicomachus wrote about the mystical properties of numbers, best known for his ...
, Iamblichus
Iamblichus ( ; ; ; ) was a Neoplatonist philosopher who determined a direction later taken by Neoplatonism. Iamblichus was also the biographer of the Greek mystic, philosopher, and mathematician Pythagoras. In addition to his philosophical co ...
, Boethius
Anicius Manlius Severinus Boethius, commonly known simply as Boethius (; Latin: ''Boetius''; 480–524 AD), was a Roman Roman Senate, senator, Roman consul, consul, ''magister officiorum'', polymath, historian, and philosopher of the Early Middl ...
, and Cassiodorus
Magnus Aurelius Cassiodorus Senator (c. 485 – c. 585), commonly known as Cassiodorus (), was a Christian Roman statesman, a renowned scholar and writer who served in the administration of Theodoric the Great, king of the Ostrogoths. ''Senato ...
, also considered the prime numbers to be a subdivision of the odd numbers, so they did not consider to be prime either. However, Euclid and a majority of the other Greek mathematicians considered as prime. The medieval Islamic mathematicians largely followed the Greeks in viewing 1 as not being a number. By the Middle Ages and Renaissance, mathematicians began treating 1 as a number, and by the 17th century some of them included it as the first prime number. In the mid-18th century, Christian Goldbach
Christian Goldbach ( , ; 18 March 1690 – 20 November 1764) was a Prussian mathematician connected with some important research mainly in number theory; he also studied law and took an interest in and a role in the Russian court. After travel ...
listed 1 as prime in his correspondence with Leonhard Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
; however, Euler himself did not consider 1 to be prime. Many 19th century mathematicians still considered 1 to be prime, and Derrick Norman Lehmer included 1 in his ''list of primes less than ten million'' published in 1914. Lists of primes that included 1 continued to be published as recently However, by the early 20th century mathematicians began to agree that 1 should not be listed as prime, but rather in its own special category as a "unit
Unit may refer to:
General measurement
* Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law
**International System of Units (SI), modern form of the metric system
**English units, histo ...
".
If 1 were to be considered a prime, many statements involving primes would need to be awkwardly reworded. For example, the fundamental theorem of arithmetic would need to be rephrased in terms of factorizations into primes greater than 1, because every number would have multiple factorizations with any number of copies of 1. Similarly, the sieve of Eratosthenes
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
It does so by iteratively marking as composite number, composite (i.e., not prime) the multiples of each prime, starting with ...
would not work correctly if it handled 1 as a prime, because it would eliminate all multiples of 1 (that is, all other numbers) and output only the single number 1. Some other more technical properties of prime numbers also do not hold for the number 1: for instance, the formulas for Euler's totient function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ...
or for the sum of divisors function are different for prime numbers than they are for 1.
Elementary properties
Unique factorization
Writing a number as a product of prime numbers is called a ''prime factorization'' of the number. For example:
:
The terms in the product are called ''prime factors''. The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, denotes the square
In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
or second power of .
The central importance of prime numbers to number theory and mathematics in general stems from the ''fundamental theorem of arithmetic''. This theorem states that every integer larger than 1 can be written as a product of one or more primes. More strongly, this product is unique in the sense that any two prime factorizations of the same number will have the same numbers of copies of the same primes, although their ordering may differ. So, although there are many different ways of finding a factorization using an integer factorization
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
algorithm, they all must produce the same result. Primes can thus be considered the "basic building blocks" of the natural numbers.
Some proofs of the uniqueness of prime factorizations are based on Euclid's lemma
In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers:
For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In ...
: If is a prime number and divides a product of integers and then divides or divides (or both). Conversely, if a number has the property that when it divides a product it always divides at least one factor of the product, then must be prime.
Infinitude
There are infinitely many prime numbers. Another way of saying this is that the sequence
:
of prime numbers never ends. This statement is referred to as ''Euclid's theorem'' in honor of the ancient Greek mathematician Euclid
Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
, since the first known proof for this statement is attributed to him. Many more proofs of the infinitude of primes are known, including an analytical proof by Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
, Goldbach's proof
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a co ...
based on Fermat number
In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a natural number, positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers ...
s, Furstenberg's proof using general topology, and Kummer's elegant proof.
Euclid's proof shows that every finite list of primes is incomplete. The key idea is to multiply together the primes in any given list and add If the list consists of the primes this gives the number
:
By the fundamental theorem, has a prime factorization
:
with one or more prime factors. is evenly divisible by each of these factors, but has a remainder of one when divided by any of the prime numbers in the given list, so none of the prime factors of can be in the given list. Because there is no finite list of all the primes, there must be infinitely many primes.
The numbers formed by adding one to the products of the smallest primes are called Euclid numbers. The first five of them are prime, but the sixth,
:
is a composite number.
Formulas for primes
There is no known efficient formula for primes. For example, there is no non-constant polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
, even in several variables, that takes ''only'' prime values. However, there are numerous expressions that do encode all primes, or only primes. One possible formula is based on Wilson's theorem
In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of ...
and generates the number 2 many times and all other primes exactly once. There is also a set of Diophantine equations ''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name:
*Diophantine approximation
In number theory, the study of Diophantine approximation deals with the approximation of real n ...
in nine variables and one parameter with the following property: the parameter is prime if and only if the resulting system of equations has a solution over the natural numbers. This can be used to obtain a single formula with the property that all its ''positive'' values are prime.
Other examples of prime-generating formulas come from Mills' theorem and a theorem of Wright
Wright is an occupational surname originating in England and Scotland. The term 'Wright' comes from the circa 700 AD Old English word 'wryhta' or 'wyrhta', meaning worker or shaper of wood. Later it became any occupational worker (for example, a ...
. These assert that there are real constants and such that
:
are prime for any natural number in the first formula, and any number of exponents in the second formula. Here represents the floor function
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or eq ...
, the largest integer less than or equal to the number in question. However, these are not useful for generating primes, as the primes must be generated first in order to compute the values of or
Open questions
Many conjectures revolving about primes have been posed. Often having an elementary formulation, many of these conjectures have withstood proof for decades: all four of Landau's problems
At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau' ...
from 1912 are still unsolved. One of them is Goldbach's conjecture
Goldbach's conjecture is one of the oldest and best-known list of unsolved problems in mathematics, unsolved problems in number theory and all of mathematics. It states that every even and odd numbers, even natural number greater than 2 is the ...
, which asserts that every even integer greater than can be written as a sum of two primes. , this conjecture has been verified for all numbers up to Weaker statements than this have been proven; for example, Vinogradov's theorem
In number theory, Vinogradov's theorem is a result which implies that any sufficiently large odd integer can be written as a sum of three prime numbers. It is a weaker form of Goldbach's weak conjecture, which would imply the existence of such a re ...
says that every sufficiently large odd integer can be written as a sum of three primes. Chen's theorem
In number theory, Chen's theorem states that every sufficiently large parity (mathematics), even number can be written as the sum of either two prime number, primes, or a prime and a semiprime (the product of two primes).
It is a weakened form o ...
says that every sufficiently large even number can be expressed as the sum of a prime and a semiprime
In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers.
Because there are infinitely many prime n ...
(the product of two primes). Also, any even integer greater than 10 can be written as the sum of six primes. The branch of number theory studying such questions is called additive number theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigro ...
.
Another type of problem concerns prime gap
A prime gap is the difference between two successive prime numbers. The ''n''-th prime gap, denoted ''g'n'' or ''g''(''p'n'') is the difference between the (''n'' + 1)-st and the ''n''-th prime numbers, i.e.,
:g_n = p_ - p_n. ...
s, the differences between consecutive primes.
The existence of arbitrarily large prime gaps can be seen by noting that the sequence consists of composite numbers, for any natural number However, large prime gaps occur much earlier than this argument shows. For example, the first prime gap of length 8 is between the primes 89 and 97, much smaller than It is conjectured that there are infinitely many twin prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime' ...
s, pairs of primes with difference 2; this is the twin prime conjecture
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' ...
. Polignac's conjecture states more generally that for every positive integer there are infinitely many pairs of consecutive primes that differ by [, Gaps between primes, pp. 186–192.]
Andrica's conjecture, Brocard's conjecture,[, p. 183.] Legendre's conjecture
Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between n^2 and (n+1)^2 for every positive integer n.
The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open prob ...
,[ Note that Chan lists Legendre's conjecture as "Sierpinski's Postulate".] and Oppermann's conjecture all suggest that the largest gaps between primes from 1 to should be at most approximately a result that is known to follow from the Riemann hypothesis, while the much stronger Cramér conjecture sets the largest gap size at . Prime gaps can be generalized to prime -tuples, patterns in the differences among more than two prime numbers. Their infinitude and density are the subject of the first Hardy–Littlewood conjecture, which can be motivated by the heuristic
A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless ...
that the prime numbers behave similarly to a random sequence of numbers with density given by the prime number theorem.
Analytic properties
Analytic number theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dir ...
studies number theory through the lens of continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s, limits
Limit or Limits may refer to:
Arts and media
* ''Limit'' (manga), a manga by Keiko Suenobu
* ''Limit'' (film), a South Korean film
* Limit (music), a way to characterize harmony
* "Limit" (song), a 2016 single by Luna Sea
* "Limits", a 2009 ...
, infinite series
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
, and the related mathematics of the infinite and infinitesimal
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
.
This area of study began with Leonhard Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
and his first major result, the solution to the Basel problem
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 ...
.
The problem asked for the value of the infinite sum
which today can be recognized as the value of the Riemann zeta function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
. This function is closely connected to the prime numbers and to one of the most significant unsolved problems in mathematics, the Riemann hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
. Euler showed that .
The reciprocal of this number, , is the limiting probability that two random numbers selected uniformly from a large range are relatively prime
In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
(have no factors in common).
The distribution of primes in the large, such as the question how many primes are smaller than a given, large threshold, is described by the prime number theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic analysis, asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by p ...
, but no efficient formula for the -th prime is known. Dirichlet's theorem on arithmetic progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is al ...
, in its basic form, asserts that linear polynomials
:
with relatively prime integers and take infinitely many prime values. Stronger forms of the theorem state that the sum of the reciprocals of these prime values diverges, and that different linear polynomials with the same have approximately the same proportions of primes.
Although conjectures have been formulated about the proportions of primes in higher-degree polynomials, they remain unproven, and it is unknown whether there exists a quadratic polynomial that (for integer arguments) is prime infinitely often.
Analytical proof of Euclid's theorem
Euler's proof that there are infinitely many primes considers the sums of reciprocals of primes,
:
Euler showed that, for any arbitrary real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
, there exists a prime for which this sum is greater than . This shows that there are infinitely many primes, because if there were finitely many primes the sum would reach its maximum value at the biggest prime rather than growing past every .
The growth rate of this sum is described more precisely by Mertens' second theorem. For comparison, the sum
:
does not grow to infinity as goes to infinity (see the Basel problem
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 ...
). In this sense, prime numbers occur more often than squares of natural numbers,
although both sets are infinite. Brun's theorem states that the sum of the reciprocals of twin prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime' ...
s,
:
is finite. Because of Brun's theorem, it is not possible to use Euler's method to solve the twin prime conjecture
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' ...
, that there exist infinitely many twin primes.
Number of primes below a given bound
The prime-counting function
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number . It is denoted by (unrelated to the number ).
A symmetric variant seen sometimes is , which is equal ...
is defined as the number of primes not greater than . For example, , since there are five primes less than or equal to 11. Methods such as the Meissel–Lehmer algorithm can compute exact values of faster than it would be possible to list each prime up to . The prime number theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic analysis, asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by p ...
states that is asymptotic to , which is denoted as
:
and means that the ratio of to the right-hand fraction approaches 1 as grows to infinity.
p. 10
This implies that the likelihood that a randomly chosen number less than is prime is (approximately) inversely proportional to the number of digits in .
It also implies that the th prime number is proportional to
and therefore that the average size of a prime gap is proportional to .[,]
Large gaps between consecutive primes
, pp. 78–79.
A more accurate estimate for is given by the offset logarithmic integral
:
Arithmetic progressions
An arithmetic progression
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
is a finite or infinite sequence of numbers such that consecutive numbers in the sequence all have the same difference. This difference is called the modulus of the progression. For example,
:
is an infinite arithmetic progression with modulus 9. In an arithmetic progression, all the numbers have the same remainder when divided by the modulus; in this example, the remainder is 3. Because both the modulus 9 and the remainder 3 are multiples of 3, so is every element in the sequence. Therefore, this progression contains only one prime number, 3 itself. In general, the infinite progression
:
can have more than one prime only when its remainder and modulus are relatively prime. If they are relatively prime, Dirichlet's theorem on arithmetic progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is al ...
asserts that the progression contains infinitely many primes.
The Green–Tao theorem shows that there are arbitrarily long finite arithmetic progressions consisting only of primes.
Prime values of quadratic polynomials
Euler noted that the function
:
yields prime numbers for , although composite numbers appear among its later values. The search for an explanation for this phenomenon led to the deep algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
of Heegner number
In number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from int ...
s and the class number problem. The Hardy–Littlewood conjecture F predicts the density of primes among the values of quadratic polynomial
In mathematics, a quadratic function of a single variable is a function of the form
:f(x)=ax^2+bx+c,\quad a \ne 0,
where is its variable, and , , and are coefficients. The expression , especially when treated as an object in itself rather tha ...
s with integer coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s in terms of the logarithmic integral and the polynomial coefficients. No quadratic polynomial has been proven to take infinitely many prime values.
The Ulam spiral
The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's ''Mathematical Games'' column in ''Scientific American'' a short time later ...
arranges the natural numbers in a two-dimensional grid, spiraling in concentric squares surrounding the origin with the prime numbers highlighted. Visually, the primes appear to cluster on certain diagonals and not others, suggesting that some quadratic polynomials take prime values more often than others.
Zeta function and the Riemann hypothesis
One of the most famous unsolved questions in mathematics, dating from 1859, and one of the Millennium Prize Problems
The Millennium Prize Problems are seven well-known complex mathematics, mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem ...
, is the Riemann hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
, which asks where the zeros of the Riemann zeta function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic c ...
are located.
This function is an analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
on the complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. For complex numbers with real part greater than one it equals both an infinite sum
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
over all integers, and an infinite product
In mathematics, for a sequence of complex numbers ''a''1, ''a''2, ''a''3, ... the infinite product
:
\prod_^ a_n = a_1 a_2 a_3 \cdots
is defined to be the limit of the partial products ''a''1''a''2...''a'n'' as ''n'' increases without bound ...
over the prime numbers,
:
This equality between a sum and a product, discovered by Euler, is called an Euler product
In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard E ...
. The Euler product can be derived from the fundamental theorem of arithmetic, and shows the close connection between the zeta function and the prime numbers.
It leads to another proof that there are infinitely many primes: if there were only finitely many,
then the sum-product equality would also be valid at , but the sum would diverge (it is the harmonic series ) while the product would be finite, a contradiction.
The Riemann hypothesis states that the zeros of the zeta-function are all either negative even numbers, or complex numbers with real part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
equal to 1/2. The original proof of the prime number theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic analysis, asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by p ...
was based on a weak form of this hypothesis, that there are no zeros with real part equal to 1,
p. 18.
/ref> although other more elementary proofs have been found. The prime-counting function can be expressed by Riemann's explicit formula
In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by for the Riemann zeta function. Such explicit formulae have been appli ...
as a sum in which each term comes from one of the zeros of the zeta function; the main term of this sum is the logarithmic integral, and the remaining terms cause the sum to fluctuate above and below the main term. In this sense, the zeros control how regularly the prime numbers are distributed. If the Riemann hypothesis is true, these fluctuations will be small, and the
asymptotic distribution of primes given by the prime number theorem will also hold over much shorter intervals (of length about the square root of for intervals near a number ).
Abstract algebra
Modular arithmetic and finite fields
Modular arithmetic modifies usual arithmetic by only using the numbers , for a natural number called the modulus.
Any other natural number can be mapped into this system by replacing it by its remainder after division by . Modular sums, differences and products are calculated by performing the same replacement by the remainder on the result of the usual sum, difference, or product of integers. Equality of integers corresponds to ''congruence'' in modular arithmetic: and are congruent (written mod ) when they have the same remainder after division by . However, in this system of numbers, division by all nonzero numbers is possible if and only if the modulus is prime. For instance, with the prime number 7 as modulus, division by 3 is possible: , because clearing denominators by multiplying both sides by 3 gives the valid formula . However, with the composite modulus 6, division by 3 is impossible. There is no valid solution to : clearing denominators by multiplying by 3 causes the left-hand side to become 2 while the right-hand side becomes either 0 or 3. In the terminology of abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, the ability to perform division means that modular arithmetic modulo a prime number forms a field or, more specifically, a finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
, while other moduli only give a ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
but not a field.
Several theorems about primes can be formulated using modular arithmetic. For instance, Fermat's little theorem
In number theory, Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . In the notation of modular arithmetic, this is expressed as
a^p \equiv a \pmod p.
For example, if and , t ...
states that if (mod ), then (mod ). Summing this over all choices of gives the equation
:
valid whenever is prime.
Giuga's conjecture says that this equation is also a sufficient condition for to be prime. Wilson's theorem
In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of ...
says that an integer is prime if and only if the factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial:
\begin
n! &= n \times ...
is congruent to mod . For a composite number this cannot hold, since one of its factors divides both and , and so is impossible.
''p''-adic numbers
The -adic order of an integer is the number of copies of in the prime factorization of . The same concept can be extended from integers to rational numbers by defining the -adic order of a fraction to be . The -adic absolute value of any rational number is then defined as . Multiplying an integer by its -adic absolute value cancels out the factors of in its factorization, leaving only the other primes. Just as the distance between two real numbers can be measured by the absolute value of their distance, the distance between two rational numbers can be measured by their -adic distance, the -adic absolute value of their difference. For this definition of distance, two numbers are close together (they have a small distance) when their difference is divisible by a high power of . In the same way that the real numbers can be formed from the rational numbers and their distances, by adding extra limiting values to form a complete field, the rational numbers with the -adic distance can be extended to a different complete field, the -adic numbers.
This picture of an order, absolute value, and complete field derived from them can be generalized to algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
s and their valuations (certain mappings from the multiplicative group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
*the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of the field to a totally ordered additive group, also called orders), absolute values
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
(certain multiplicative mappings from the field to the real numbers, also called norm
Norm, the Norm or NORM may refer to:
In academic disciplines
* Normativity, phenomenon of designating things as good or bad
* Norm (geology), an estimate of the idealised mineral content of a rock
* Norm (philosophy), a standard in normative e ...
s),[ See also p. 64.] and places (extensions to complete fields in which the given field is a dense set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ...
, also called completions). The extension from the rational numbers to the real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, for instance, is a place in which the distance between numbers is the usual absolute value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of their difference. The corresponding mapping to an additive group would be the logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
of the absolute value, although this does not meet all the requirements of a valuation. According to Ostrowski's theorem
In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers \Q is equivalent to either the usual real absolute value or a -adic absolute value.
Definitions
An a ...
, up to a natural notion of equivalence, the real numbers and -adic numbers, with their orders and absolute values, are the only valuations, absolute values, and places on the rational numbers. The local–global principle allows certain problems over the rational numbers to be solved by piecing together solutions from each of their places, again underlining the importance of primes to number theory.
Prime elements of a ring
A commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
is an algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
where addition, subtraction and multiplication are defined. The integers are a ring, and the prime numbers in the integers have been generalized to rings in two different ways, ''prime elements'' and ''irreducible elements''. An element of a ring is called prime if it is nonzero, has no multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
(that is, it is not a unit
Unit may refer to:
General measurement
* Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law
**International System of Units (SI), modern form of the metric system
**English units, histo ...
), and satisfies the following requirement: whenever divides the product of two elements of , it also divides at least one of or . An element is irreducible if it is neither a unit nor the product of two other non-unit elements. In the ring of integers, the prime and irreducible elements form the same set,
:
In an arbitrary ring, all prime elements are irreducible. The converse does not hold in general, but does hold for unique factorization domain
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is ...
s.
The fundamental theorem of arithmetic continues to hold (by definition) in unique factorization domains. An example of such a domain is the Gaussian integer
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf ...
s , the ring of complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s of the form where denotes the imaginary unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
and and are arbitrary integers. Its prime elements are known as Gaussian prime
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
s. Not every number that is prime among the integers remains prime in the Gaussian integers; for instance, the number 2 can be written as a product of the two Gaussian primes and . Rational primes (the prime elements in the integers) congruent to 3 mod 4 are Gaussian primes, but rational primes congruent to 1 mod 4 are not. This is a consequence of Fermat's theorem on sums of two squares
In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as:
:p = x^2 + y^2,
with ''x'' and ''y'' integers, if and only if
:p \equiv ...
,
which states that an odd prime is expressible as the sum of two squares, , and therefore factorable as , exactly when is 1 mod 4.
Prime ideals
Not every ring is a unique factorization domain. For instance, in the ring of numbers (for integers and ) the number has two factorizations , where neither of the four factors can be reduced any further, so it does not have a unique factorization. In order to extend unique factorization to a larger class of rings, the notion of a number can be replaced with that of an ideal, a subset of the elements of a ring that contains all sums of pairs of its elements, and all products of its elements with ring elements.
''Prime ideals'', which generalize prime elements in the sense that the principal ideal
In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
generated by a prime element is a prime ideal, are an important tool and object of study in commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
, algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
and algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. The prime ideals of the ring of integers are the ideals , , , , , , ... The fundamental theorem of arithmetic generalizes to the Lasker–Noether theorem
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related ...
, which expresses every ideal in a Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
as an intersection of primary ideal
In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. ...
s, which are the appropriate generalizations of prime power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number.
For example: , and are prime powers, while
, and are not.
The sequence of prime powers begins:
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 1 ...
s.
The spectrum of a ring
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with ...
is a geometric space whose points are the prime ideals of the ring. Arithmetic geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.
...
also benefits from this notion, and many concepts exist in both geometry and number theory. For example, factorization or ramification of prime ideals when lifted to an extension field
In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
, a basic problem of algebraic number theory, bears some resemblance with ramification in geometry. These concepts can even assist with in number-theoretic questions solely concerned with integers. For example, prime ideals in the ring of integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
of quadratic number fields can be used in proving quadratic reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard st ...
, a statement that concerns the existence of square roots modulo integer prime numbers. Early attempts to prove Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases ...
led to Kummer Kummer is a German surname. Notable people with the surname include:
*Bernhard Kummer (1897–1962), German Germanist
* Clare Kummer (1873–1958), American composer, lyricist and playwright
* Clarence Kummer (1899–1930), American jockey
* Chris ...
's introduction of regular prime
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli num ...
s, integer prime numbers connected with the failure of unique factorization in the cyclotomic integers. The question of how many integer prime numbers factor into a product of multiple prime ideals in an algebraic number field is addressed by Chebotarev's density theorem, which (when applied to the cyclotomic integers) has Dirichlet's theorem on primes in arithmetic progressions as a special case.
Group theory
In the theory of finite group
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s the Sylow theorems
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed ...
imply that, if a power of a prime number divides the order of a group
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the sub ...
, then the group has a subgroup of order . By Lagrange's theorem, any group of prime order is a cyclic group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
,
and by Burnside's theorem any group whose order is divisible by only two primes is solvable.
Computational methods
For a long time, number theory in general, and the study of prime numbers in particular, was seen as the canonical example of pure mathematics, with no applications outside of mathematics other than the use of prime numbered gear teeth to distribute wear evenly. In particular, number theorists such as British
British may refer to:
Peoples, culture, and language
* British people, nationals or natives of the United Kingdom, British Overseas Territories and Crown Dependencies.
* British national identity, the characteristics of British people and culture ...
mathematician G. H. Hardy
Godfrey Harold Hardy (7 February 1877 – 1 December 1947) was an English mathematician, known for his achievements in number theory and mathematical analysis. In biology, he is known for the Hardy–Weinberg principle, a basic principle of pop ...
prided themselves on doing work that had absolutely no military significance.
This vision of the purity of number theory was shattered in the 1970s, when it was publicly announced that prime numbers could be used as the basis for the creation of public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic alg ...
algorithms.
These applications have led to significant study of algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s for computing with prime numbers, and in particular of primality test
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating wheth ...
ing, methods for determining whether a given number is prime. The most basic primality testing routine, trial division, is too slow to be useful for large numbers. One group of modern primality tests is applicable to arbitrary numbers, while more efficient tests are available for numbers of special types. Most primality tests only tell whether their argument is prime or not. Routines that also provide a prime factor of composite arguments (or all of its prime factors) are called factorization
In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a p ...
algorithms. Prime numbers are also used in computing for checksum
A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify dat ...
s, hash table
In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps Unique key, keys to Value (computer science), values. ...
s, and pseudorandom number generator
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random number generation, random n ...
s.
Trial division
The most basic method of checking the primality of a given integer is called '' trial division''. This method divides by each integer from 2 up to the square root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
of . Any such integer dividing evenly establishes as composite; otherwise it is prime. Integers larger than the square root do not need to be checked because, whenever , one of the two factors and is less than or equal to the square root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
of . Another optimization is to check only primes as factors in this range. For instance, to check whether 37 is prime, this method divides it by the primes in the range from 2 to , which are 2, 3, and 5. Each division produces a nonzero remainder, so 37 is indeed prime.
Although this method is simple to describe, it is impractical for testing the primality of large integers, because the number of tests that it performs grows exponentially as a function of the number of digits of these integers. However, trial division is still used, with a smaller limit than the square root on the divisor size, to quickly discover composite numbers with small factors, before using more complicated methods on the numbers that pass this filter.
p. 220
Sieves
Before computers, mathematical table
Mathematical tables are lists of numbers showing the results of a calculation with varying arguments. Trigonometric tables were used in ancient Greece and India for applications to astronomy and celestial navigation, and continued to be widely u ...
s listing all of the primes or prime factorizations up to a given limit were commonly printed. The oldest known method for generating a list of primes is called the sieve of Eratosthenes. The animation shows an optimized variant of this method. Another more asymptotically efficient sieving method for the same problem is the sieve of Atkin. In advanced mathematics, sieve theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limi ...
applies similar methods to other problems.
Primality testing versus primality proving
Some of the fastest modern tests for whether an arbitrary given number is prime are probabilistic
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
(or Monte Carlo
Monte Carlo ( ; ; or colloquially ; , ; ) is an official administrative area of Monaco, specifically the Ward (country subdivision), ward of Monte Carlo/Spélugues, where the Monte Carlo Casino is located. Informally, the name also refers to ...
) algorithms, meaning that they have a small random chance of producing an incorrect answer. For instance the Solovay–Strassen primality test on a given number chooses a number randomly from 2 through and uses modular exponentiation
Modular exponentiation is exponentiation performed over a modulus. It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie–Hellman key exchange and RSA public/private keys.
Modula ...
to check whether is divisible by . If so, it answers yes and otherwise it answers no. If really is prime, it will always answer yes, but if is composite then it answers yes with probability at most 1/2 and no with probability at least 1/2. If this test is repeated times on the same number, the probability that a composite number could pass the test every time is at most . Because this decreases exponentially with the number of tests, it provides high confidence (although not certainty) that a number that passes the repeated test is prime. On the other hand, if the test ever fails, then the number is certainly composite.
A composite number that passes such a test is called a pseudoprime
A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy.
Some sources use the term pseudoprime to ...
.
In contrast, some other algorithms guarantee that their answer will always be correct: primes will always be determined to be prime and composites will always be determined to be composite. For instance, this is true of trial division. The algorithms with guaranteed-correct output include both deterministic
Determinism is the metaphysical view that all events within the universe (or multiverse) can occur only in one possible way. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping mo ...
(non-random) algorithms, such as the AKS primality test
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientist ...
,
and randomized Las Vegas algorithm
In computing, a Las Vegas algorithm is a randomized algorithm that always gives Correctness (computer science), correct results; that is, it always produces the correct result or it informs about the failure. However, the runtime of a Las Vegas alg ...
s where the random choices made by the algorithm do not affect its final answer, such as some variations of elliptic curve primality proving.
When the elliptic curve method concludes that a number is prime, it provides primality certificate that can be verified quickly.
The elliptic curve primality test is the fastest in practice of the guaranteed-correct primality tests, but its runtime analysis is based on heuristic arguments rather than rigorous proofs. The AKS primality test
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientist ...
has mathematically proven time complexity, but is slower than elliptic curve primality proving in practice. These methods can be used to generate large random prime numbers, by generating and testing random numbers until finding one that is prime; when doing this, a faster probabilistic test can quickly eliminate most composite numbers before a guaranteed-correct algorithm is used to verify that the remaining numbers are prime.
The following table lists some of these tests. Their running time is given in terms of , the number to be tested and, for probabilistic algorithms, the number of tests performed. Moreover, is an arbitrarily small positive number, and log is the logarithm
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
to an unspecified base. The big O notation
Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a memb ...
means that each time bound should be multiplied by a constant factor to convert it from dimensionless units to units of time; this factor depends on implementation details such as the type of computer used to run the algorithm, but not on the input parameters and .
Special-purpose algorithms and the largest known prime
In addition to the aforementioned tests that apply to any natural number, some numbers of a special form can be tested for primality more quickly. For example, the Lucas–Lehmer primality test can determine whether a Mersenne number
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17t ...
(one less than a power of two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number 2, two as the Base (exponentiation), base and integer as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^ ...
) is prime, deterministically, in the same time as a single iteration of the Miller–Rabin test. This is why since 1992 () the largest ''known'' prime has always been a Mersenne prime. It is conjectured that there are infinitely many Mersenne primes.
The following table gives the largest known primes of various types. Some of these primes have been found using distributed computing
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers.
The components of a distributed system commu ...
. In 2009, the Great Internet Mersenne Prime Search
The Great Internet Mersenne Prime Search (GIMPS) is a collaborative project of volunteers who use freely available software to search for Mersenne prime numbers.
GIMPS was founded in 1996 by George Woltman, who also wrote the Prime95 client and ...
project was awarded a US$100,000 prize for first discovering a prime with at least 10 million digits. The Electronic Frontier Foundation
The Electronic Frontier Foundation (EFF) is an American international non-profit digital rights group based in San Francisco, California. It was founded in 1990 to promote Internet civil liberties.
It provides funds for legal defense in court, ...
also offers $150,000 and $250,000 for primes with at least 100 million digits and 1 billion digits, respectively.
Integer factorization
Given a composite integer , the task of providing one (or all) prime factors is referred to as ''factorization'' of . It is significantly more difficult than primality testing, and although many factorization algorithms are known, they are slower than the fastest primality testing methods. Trial division and Pollard's rho algorithm can be used to find very small factors of , and elliptic curve factorization can be effective when has factors of moderate size. Methods suitable for arbitrary large numbers that do not depend on the size of its factors include the quadratic sieve and general number field sieve
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than . Heuristically, its complexity for factoring an integer (consisting of bits) is of the form
:
\begin
& ...
. As with primality testing, there are also factorization algorithms that require their input to have a special form, including the special number field sieve
Special or specials may refer to:
Policing
* Specials, Ulster Special Constabulary, the Northern Ireland police force
* Specials, Special Constable, an auxiliary, volunteer, or temporary; police worker or police officer
* Special police forces
...
. the largest number known to have been factored by a general-purpose algorithm is RSA-240, which has 240 decimal digits (795 bits) and is the product of two large primes.
Shor's algorithm Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong ...
can factor any integer in a polynomial number of steps on a quantum computer
A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of both particles and waves, and quantum computing takes advantage of this behavior using specialized hardware. ...
. However, current technology can only run this algorithm for very small numbers. , the largest number that has been factored by a quantum computer running Shor's algorithm is 21.
Other computational applications
Several public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic alg ...
algorithms, such as RSA and the Diffie–Hellman key exchange
Diffie–Hellman (DH) key exchangeSynonyms of Diffie–Hellman key exchange include:
* Diffie–Hellman–Merkle key exchange
* Diffie–Hellman key agreement
* Diffie–Hellman key establishment
* Diffie–Hellman key negotiation
* Exponential ke ...
, are based on large prime numbers (2048-bit
The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as ...
primes are common). RSA relies on the assumption that it is much easier (that is, more efficient) to perform the multiplication of two (large) numbers and than to calculate and (assumed coprime
In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
) if only the product is known. The Diffie–Hellman key exchange relies on the fact that there are efficient algorithms for modular exponentiation
Modular exponentiation is exponentiation performed over a modulus. It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie–Hellman key exchange and RSA public/private keys.
Modula ...
(computing ), while the reverse operation (the discrete logarithm
In mathematics, for given real numbers a and b, the logarithm \log_b(a) is a number x such that b^x=a. Analogously, in any group G, powers b^k can be defined for all integers k, and the discrete logarithm \log_b(a) is an integer k such that b^k=a ...
) is thought to be a hard problem.
Prime numbers are frequently used for hash table
In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps Unique key, keys to Value (computer science), values. ...
s. For instance the original method of Carter and Wegman for universal hashing
In mathematics and computing, universal hashing (in a randomized algorithm or data structure) refers to selecting a hash function at random from a family of hash functions with a certain mathematical property (see definition below). This guarantees ...
was based on computing hash function
A hash function is any Function (mathematics), function that can be used to map data (computing), data of arbitrary size to fixed-size values, though there are some hash functions that support variable-length output. The values returned by a ...
s by choosing random linear function
In mathematics, the term linear function refers to two distinct but related notions:
* In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
s modulo large prime numbers. Carter and Wegman generalized this method to -independent hashing by using higher-degree polynomials, again modulo large primes. As well as in the hash function, prime numbers are used for the hash table size in quadratic probing
Quadratic probing is an open addressing scheme in computer programming for resolving hash collisions in hash tables. Quadratic probing operates by taking the original hash index and adding successive values of an arbitrary quadratic polynomial un ...
based hash tables to ensure that the probe sequence covers the whole table.
Some checksum
A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify dat ...
methods are based on the mathematics of prime numbers. For instance the checksums used in International Standard Book Number
The International Standard Book Number (ISBN) is a numeric commercial book identifier that is intended to be unique. Publishers purchase or receive ISBNs from an affiliate of the International ISBN Agency.
A different ISBN is assigned to e ...
s are defined by taking the rest of the number modulo 11, a prime number. Because 11 is prime this method can detect both single-digit errors and transpositions of adjacent digits. Another checksum method, Adler-32
Adler-32 is a checksum algorithm written by Mark Adler in 1995, modifying Fletcher's checksum. Compared to a cyclic redundancy check of the same length, it trades reliability for speed. Adler-32 is more reliable than Fletcher-16, and slightly le ...
, uses arithmetic modulo 65521, the largest prime number less than . Prime numbers are also used in pseudorandom number generator
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random number generation, random n ...
s including linear congruential generator
A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation. The method represents one of the oldest and best-known pseudorandom number gener ...
s and the Mersenne Twister
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by and . Its name derives from the choice of a Mersenne prime as its period length.
The Mersenne Twister was created specifically to address most of ...
.
Other applications
Prime numbers are of central importance to number theory but also have many applications to other areas within mathematics, including abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
and elementary geometry. For example, it is possible to place prime numbers of points in a two-dimensional grid so that no three are in a line, or so that every triangle formed by three of the points has large area. Another example is Eisenstein's criterion
In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials wit ...
, a test for whether a polynomial is irreducible based on divisibility of its coefficients by a prime number and its square.
The concept of a prime number is so important that it has been generalized in different ways in various branches of mathematics. Generally, "prime" indicates minimality or indecomposability, in an appropriate sense. For example, the prime field
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is wid ...
of a given field is its smallest subfield that contains both 0 and 1. It is either the field of rational numbers or a finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
with a prime number of elements, whence the name. Often a second, additional meaning is intended by using the word prime, namely that any object can be, essentially uniquely, decomposed into its prime components. For example, in knot theory
In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, a prime knot
In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non- trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be ...
is a knot
A knot is an intentional complication in Rope, cordage which may be practical or decorative, or both. Practical knots are classified by function, including List of hitch knots, hitches, List of bend knots, bends, List of loop knots, loop knots, ...
that is indecomposable in the sense that it cannot be written as the connected sum
In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classifi ...
of two nontrivial knots. Any knot can be uniquely expressed as a connected sum of prime knots. The prime decomposition of 3-manifolds is another example of this type.
Beyond mathematics and computing, prime numbers have potential connections to quantum mechanic
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
s, and have been used metaphorically in the arts and literature. They have also been used in evolutionary biology
Evolutionary biology is the subfield of biology that studies the evolutionary processes such as natural selection, common descent, and speciation that produced the diversity of life on Earth. In the 1930s, the discipline of evolutionary biolo ...
to explain the life cycles of cicada
The cicadas () are a superfamily, the Cicadoidea, of insects in the order Hemiptera (true bugs). They are in the suborder Auchenorrhyncha, along with smaller jumping bugs such as leafhoppers and froghoppers. The superfamily is divided into two ...
s.
Constructible polygons and polygon partitions
Fermat prime
In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: 3, 5, ...
s are primes of the form
:
with a nonnegative integer
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
. They are named after Pierre de Fermat
Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
, who conjectured that all such numbers are prime. The first five of these numbers – 3, 5, 17, 257, and 65,537 – are prime, but is composite and so are all other Fermat numbers that have been verified as of 2017. A regular -gon is constructible using straightedge and compass if and only if the odd prime factors of (if any) are distinct Fermat primes. Likewise, a regular -gon may be constructed using straightedge, compass, and an angle trisector if and only if the prime factors of are any number of copies of 2 or 3 together with a (possibly empty) set of distinct Pierpont prime
In number theory, a Pierpont prime is a prime number of the form
2^u\cdot 3^v + 1\,
for some nonnegative integers and . That is, they are the prime numbers for which is 3-smooth. They are named after the mathematician James Pierpont, who us ...
s, primes of the form .
It is possible to partition any convex polygon into smaller convex polygons of equal area and equal perimeter, when is a power of a prime number, but this is not known for other values of .
Quantum mechanics
Beginning with the work of Hugh Montgomery and Freeman Dyson
Freeman John Dyson (15 December 1923 – 28 February 2020) was a British-American theoretical physics, theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrix, random matrices, math ...
in the 1970s, mathematicians and physicists have speculated that the zeros of the Riemann zeta function are connected to the energy levels of quantum system
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
s. Prime numbers are also significant in quantum information science
Quantum information science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum phys ...
, thanks to mathematical structures such as mutually unbiased bases and symmetric informationally complete positive-operator-valued measures.
Biology
The evolutionary strategy used by cicada
The cicadas () are a superfamily, the Cicadoidea, of insects in the order Hemiptera (true bugs). They are in the suborder Auchenorrhyncha, along with smaller jumping bugs such as leafhoppers and froghoppers. The superfamily is divided into two ...
s of the genus ''Magicicada
The term periodical cicada is commonly used to refer to any of the seven species of the genus ''Magicicada'' of eastern North America, the 13- and 17-year cicadas. They are called periodical because nearly all individuals in a local population a ...
'' makes use of prime numbers. These insects spend most of their lives as grubs underground. They only pupate and then emerge from their burrows after 7, 13 or 17 years, at which point they fly about, breed, and then die after a few weeks at most. Biologists theorize that these prime-numbered breeding cycle lengths have evolved in order to prevent predators from synchronizing with these cycles. In contrast, the multi-year periods between flowering in bamboo
Bamboos are a diverse group of mostly evergreen perennial plant, perennial flowering plants making up the subfamily (biology), subfamily Bambusoideae of the grass family Poaceae. Giant bamboos are the largest members of the grass family, in th ...
plants are hypothesized to be smooth number
In number theory, an ''n''-smooth (or ''n''-friable) number is an integer whose prime factors are all less than or equal to ''n''. For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 ...
s, having only small prime numbers in their factorizations.
Arts and literature
Prime numbers have influenced many artists and writers. The French composer
A composer is a person who writes music. The term is especially used to indicate composers of Western classical music, or those who are composers by occupation. Many composers are, or were, also skilled performers of music.
Etymology and def ...
Olivier Messiaen
Olivier Eugène Prosper Charles Messiaen (, ; ; 10 December 1908 – 27 April 1992) was a French composer, organist, and ornithology, ornithologist. One of the major composers of the 20th-century classical music, 20th century, he was also an ou ...
used prime numbers to create ametrical music through "natural phenomena". In works such as '' La Nativité du Seigneur'' (1935) and '' Quatre études de rythme'' (1949–1950), he simultaneously employs motifs with lengths given by different prime numbers to create unpredictable rhythms: the primes 41, 43, 47 and 53 appear in the third étude, "Neumes rythmiques". According to Messiaen this way of composing was "inspired by the movements of nature, movements of free and unequal durations".
In his science fiction novel '' Contact'', scientist Carl Sagan
Carl Edward Sagan (; ; November 9, 1934December 20, 1996) was an American astronomer, planetary scientist and science communicator. His best known scientific contribution is his research on the possibility of extraterrestrial life, including e ...
suggested that prime factorization could be used as a means of establishing two-dimensional image planes in communications with aliens, an idea that he had first developed informally with American astronomer Frank Drake
Frank Donald Drake (May 28, 1930 – September 2, 2022) was an American astrophysicist and astrobiologist.
He began his career as a radio astronomer, studying the planets of the Solar System and later pulsars. Drake expanded his interests ...
in 1975. In the novel '' The Curious Incident of the Dog in the Night-Time'' by Mark Haddon
Mark Haddon (born 26 September 1962) is an English novelist, best known for ''The Curious Incident of the Dog in the Night-Time'' (2003). He won the Whitbread Award, the Dolly Gray Children's Literature Award, the Guardian Prize, and a Commonweal ...
, the narrator arranges the sections of the story by consecutive prime numbers as a way to convey the mental state of its main character, a mathematically gifted teen with Asperger syndrome
Asperger syndrome (AS), also known as Asperger's syndrome or Asperger's, is a diagnostic label that has historically been used to describe a neurodevelopmental disorder characterized by significant difficulties in social interaction and no ...
. Prime numbers are used as a metaphor for loneliness and isolation in the Paolo Giordano
Paolo Giordano (born 1982) is an Italian writer who won the Premio Strega literary award with his debut novel, first novel ''The Solitude of Prime Numbers (novel), The Solitude of Prime Numbers''.
Biography
Paolo Giordano was born on 19 Dec ...
novel '' The Solitude of Prime Numbers'', in which they are portrayed as "outsiders" among integers.
Notes
References
External links
*
* Caldwell, Chris, The Prime Pages
The PrimePages is a website about prime number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is ...
a
primes.utm.edu
* .
*
from ''Plus'', December 1, 2008, produced by the Millennium Mathematics Project at the University of Cambridge.
Generators and calculators
can factorize any positive integer up to 20 digits.
Fast Online primality test with factorization
makes use of the Elliptic Curve Method (up to thousand-digits numbers, requires Java).
Huge database of prime numbers
.
{{Portal bar, Mathematics, Science, History of science, Arithmetic
Articles containing proofs
Integer sequences