Step-growth vs. chain-growth polymerization
Step-growth and chain-growth are the main classes of polymerization reaction mechanisms. The former is often easier to implement but requires precise control of stoichiometry. The latter more reliably affords high molecular-weight polymers, but only applies to certain monomers.Step-growth
In step-growth (or step) polymerization, pairs of reactants, of any lengths, combine at each step to form a longer polymer molecule. The average molar mass increases slowly. Long chains form only late in the reaction. Step-growth polymers are formed by independent reaction steps between functional groups of monomer units, usually containing heteroatoms such as nitrogen or oxygen. Most step-growth polymers are also classified as condensation polymers, since a small molecule such as water is lost when the polymer chain is lengthened. For example, polyester chains grow by reaction of alcohol and carboxylic acid groups to form ester links with loss of water. However, there are exceptions; for example polyurethanes are step-growth polymers formed from isocyanate and alcohol bifunctional monomers) without loss of water or other volatile molecules, and are classified as addition polymers rather than condensation polymers. Step-growth polymers increase in molecular weight at a very slow rate at lower conversions and reach moderately high molecular weights only at very high conversion (i.e., >95%). Solid state polymerization to afford polyamides (e.g., nylons) is an example of step-growth polymerization.Chain-growth
In chain-growth (or chain) polymerization, the only chain-extension reaction step is the addition of a monomer to a growing chain with an active center such as a free radical, cation, or anion. Once the growth of a chain is initiated by formation of an active center, chain propagation is usually rapid by addition of a sequence of monomers. Long chains are formed from the beginning of the reaction. Chain-growth polymerization (or addition polymerization) involves the linking together of unsaturated monomers, especially containing carbon-carbon double bonds. The pi-bond is lost by formation of a new sigma bond. Chain-growth polymerization is involved in the manufacture of polymers such as polyethylene, polypropylene, polyvinyl chloride (PVC), and acrylate. In these cases, the alkenes RCH=CH2 are converted to high molecular weight alkanes (-RCHCH2-)n (R = H, CH3, Cl, CO2CH3). Other forms of chain growth polymerization include cationic addition polymerization and anionic addition polymerization. A special case of chain-growth polymerization leads to living polymerization. Ziegler–Natta polymerization allows considerable control of polymer branching.Photopolymerization
Most photopolymerization reactions are chain-growth polymerizations which are initiated by the absorption of visible or ultraviolet light. Photopolymerization can also be a step-growth polymerization. The light may be absorbed either directly by the reactant monomer (''direct'' photopolymerization), or else by a ''photosensitizer'' which absorbs the light and then transfers energy to the monomer. In general, only the initiation step differs from that of the ordinary thermal polymerization of the same monomer; subsequent propagation, termination, and chain-transfer steps are unchanged. In step-growth photopolymerization, absorption of light triggers an addition (or condensation) reaction between two comonomers that do not react without light. A propagation cycle is not initiated because each growth step requires the assistance of light. Photopolymerization can be used as a photographic or printing process because polymerization only occurs in regions which have been exposed to light. Unreacted monomer can be removed from unexposed regions, leaving a relief polymeric image. Several forms of 3D printing—including layer-by-layer stereolithography and two-photon absorption 3D photopolymerization—use photopolymerization. Multiphoton polymerization using single pulses have also been demonstrated for fabrication of complex structures using a digital micromirror device.See also
* Cross-link * Enzymatic polymerization * ''In situ'' polymerization * Metallocene * Plasma polymerization * Polymer characterization * Polymer physics * Reversible addition−fragmentation chain-transfer polymerization * Ring-opening polymerization * Sequence-controlled polymers * Sol-gelReferences
{{Authority control