HOME

TheInfoList



OR:

In
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
,
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
that consists of points randomly located on a
mathematical space In mathematics, a space is a set (sometimes known as a ''universe'') endowed with a structure defining the relationships among the elements of the set. A subspace is a subset of the parent space which retains the same structure. While modern ma ...
with the essential feature that the points occur independently of one another. The process's name derives from the fact that the number of points in any given finite region follows a
Poisson distribution In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known const ...
. The process and the distribution are named after French mathematician
Siméon Denis Poisson Baron Siméon Denis Poisson (, ; ; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity ...
. The process itself was discovered independently and repeatedly in several settings, including experiments on
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
, telephone call arrivals and
actuarial science Actuarial science is the discipline that applies mathematics, mathematical and statistics, statistical methods to Risk assessment, assess risk in insurance, pension, finance, investment and other industries and professions. Actuary, Actuaries a ...
. This point process is used as a
mathematical model A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
for seemingly random processes in numerous disciplines including
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
,G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy. ''Journal of statistical planning and inference'', 50(3):311–326, 1996.
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
,H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems. ''Journal of mathematical biology'', 26(3):263–298, 1988.
ecology Ecology () is the natural science of the relationships among living organisms and their Natural environment, environment. Ecology considers organisms at the individual, population, community (ecology), community, ecosystem, and biosphere lev ...
,H. Thompson. Spatial point processes, with applications to ecology. ''Biometrika'', 42(1/2):102–115, 1955.
geology Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth ...
,C. B. Connor and B. E. Hill. Three nonhomogeneous poisson models for the probability of basaltic volcanism: application to the yucca mountain region, nevada. ''Journal of Geophysical Research: Solid Earth (1978–2012)'', 100(B6):10107–10125, 1995.
seismology Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic ...
,
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,J. D. Scargle. Studies in astronomical time series analysis. v. bayesian blocks, a new method to analyze structure in photon counting data. ''The Astrophysical Journal'', 504(1):405, 1998.
economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ...
,P. Aghion and P. Howitt. A Model of Growth through Creative Destruction. ''Econometrica'', 60(2). 323–351, 1992.
image processing An image or picture is a visual representation. An image can be two-dimensional, such as a drawing, painting, or photograph, or three-dimensional, such as a carving or sculpture. Images may be displayed through other media, including a pr ...
,M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini. Image deblurring with poisson data: from cells to galaxies. ''Inverse Problems'', 25(12):123006, 2009. and
telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or other communication technologies. These means of ...
.F. Baccelli and B. Błaszczyszyn. ''Stochastic Geometry and Wireless Networks, Volume II- Applications'', volume 4, No 1–2 of ''Foundations and Trends in Networking''. NoW Publishers, 2009.M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti. Stochastic geometry and random graphs for the analysis and design of wireless networks. ''IEEE JSAC'', 27(7):1029–1046, September 2009. The Poisson point process is often defined on the real number line, where it can be considered a
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Sto ...
. It is used, for example, in
queueing theory Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because th ...
to model random events distributed in time, such as the arrival of customers at a store, phone calls at an exchange or occurrence of earthquakes. In the plane, the point process, also known as a spatial Poisson process, can represent the locations of scattered objects such as transmitters in a
wireless network A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks, and business installations to avoid the costly process of introducing cables int ...
,J. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, and S. Weber. A primer on spatial modeling and analysis in wireless networks. ''Communications Magazine, IEEE'', 48(11):156–163, 2010.F. Baccelli and B. Błaszczyszyn. ''Stochastic Geometry and Wireless Networks, Volume I – Theory'', volume 3, No 3–4 of ''Foundations and Trends in Networking''. NoW Publishers, 2009.
particles In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
colliding into a detector or trees in a forest. The process is often used in mathematical models and in the related fields of spatial point processes, stochastic geometry, spatial statistics and
continuum percolation theory In mathematics and probability theory, continuum percolation theory is a branch of mathematics that extends discrete percolation theory to continuous space (often Euclidean space ). More specifically, the underlying points of discrete percolation fo ...
.R. Meester and R. Roy. Continuum percolation, volume 119 of cambridge tracts in mathematics, 1996. The point process depends on a single mathematical object, which, depending on the context, may be a constant, a locally integrable function or, in more general settings, a
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
. In the first case, the constant, known as the rate or intensity, is the average
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
of the points in the Poisson process located in some region of space. The resulting point process is called a homogeneous or stationary Poisson point process. In the second case, the point process is called an inhomogeneous or nonhomogeneous Poisson point process, and the average density of points depend on the location of the underlying space of the Poisson point process. The word ''point'' is often omitted, but there are other ''Poisson processes'' of objects, which, instead of points, consist of more complicated mathematical objects such as lines and
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
s, and such processes can be based on the Poisson point process. Both the homogeneous and nonhomogeneous Poisson point processes are particular cases of the generalized renewal process.


Overview of definitions

Depending on the setting, the process has several equivalent definitions as well as definitions of varying generality owing to its many applications and characterizations. The Poisson point process can be defined, studied and used in one dimension, for example, on the real line, where it can be interpreted as a counting process or part of a queueing model; in higher dimensions such as the plane where it plays a role in stochastic geometry and spatial statistics;A. Baddeley. A crash course in stochastic geometry. ''Stochastic Geometry: Likelihood and Computation Eds OE Barndorff-Nielsen, WS Kendall, HNN van Lieshout (London: Chapman and Hall)'', pages 1–35, 1999. or on more general mathematical spaces. Consequently, the notation, terminology and level of mathematical rigour used to define and study the Poisson point process and points processes in general vary according to the context. Despite all this, the Poisson point process has two key properties—the Poisson property and the independence property— that play an essential role in all settings where the Poisson point process is used. The two properties are not logically independent; indeed, the Poisson distribution of point counts implies the independence property, while in the converse direction the assumptions that: (i) the point process is simple, (ii) has no fixed atoms, and (iii) is a.s. boundedly finite are required.


Poisson distribution of point counts

A Poisson point process is characterized via the
Poisson distribution In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known const ...
. The Poisson distribution is the probability distribution of a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
N (called a ''Poisson random variable'') such that the probability that \textstyle N equals \textstyle n is given by: : \Pr \=\frac e^ where n! denotes
factorial In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times ...
and the parameter \Lambda determines the shape of the distribution. (In fact, \Lambda equals the expected value of N.) By definition, a Poisson point process has the property that the number of points in a bounded region of the process's underlying space is a Poisson-distributed random variable.


Complete independence

Consider a collection of disjoint and bounded subregions of the underlying space. By definition, the number of points of a Poisson point process in each bounded subregion will be completely independent of all the others. This property is known under several names such as ''complete randomness'', ''complete independence'', or ''independent scattering'' and is common to all Poisson point processes. In other words, there is a lack of interaction between different regions and the points in general,W. Feller. Introduction to probability theory and its applications, vol. ii pod. 1974. which motivates the Poisson process being sometimes called a ''purely'' or ''completely'' random process.


Homogeneous Poisson point process

If a Poisson point process has a parameter of the form \Lambda=\nu \lambda, where \nu is Lebesgue measure (that is, it assigns length, area, or volume to sets) and \lambda is a constant, then the point process is called a homogeneous or stationary Poisson point process. The parameter, called rate or intensity, is related to the expected (or average) number of Poisson points existing in some bounded region, where ''rate'' is usually used when the underlying space has one dimension. The parameter \lambda can be interpreted as the average number of points per some unit of extent such as
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
, area,
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
, or time, depending on the underlying mathematical space, and it is also called the ''mean density'' or ''mean rate''; see
Terminology Terminology is a group of specialized words and respective meanings in a particular field, and also the study of such terms and their use; the latter meaning is also known as terminology science. A ''term'' is a word, Compound (linguistics), com ...
.


Interpreted as a counting process

The homogeneous Poisson point process, when considered on the positive half-line, can be defined as a
counting process A counting process is a stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the famil ...
, a type of stochastic process, which can be denoted as \. A counting process represents the total number of occurrences or events that have happened up to and including time t. A counting process is a homogeneous Poisson counting process with rate \lambda>0 if it has the following three properties: * N(0)=0; * has independent increments; and * the number of events (or points) in any interval of length t is a Poisson random variable with parameter (or mean) \lambda t. The last property implies: : \operatorname E (t)\lambda t. In other words, the probability of the random variable N(t) being equal to n is given by: : \Pr \=\frac e^. The Poisson counting process can also be defined by stating that the time differences between events of the counting process are exponential variables with mean 1/\lambda. The time differences between the events or arrivals are known as interarrival or interoccurrence times.


Interpreted as a point process on the real line

Interpreted as a point process, a Poisson point process can be defined on the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
by considering the number of points of the process in the interval (a,b]. For the homogeneous Poisson point process on the real line with parameter \lambda>0, the probability of this random number of points, written here as N(a,b], being equal to some counting number n is given by: : \Pr \=\frac e^, For some positive integer k, the homogeneous Poisson point process has the finite-dimensional distribution given by: : \Pr \ = \prod_^k\frac e^, where the real numbers a_i. In other words, N(a,b] is a Poisson random variable with mean \lambda(b-a), where a\le b. Furthermore, the number of points in any two disjoint intervals, say, (a_1,b_1] and (a_2,b_2] are independent of each other, and this extends to any finite number of disjoint intervals. In the queueing theory context, one can consider a point existing (in an interval) as an ''event'', but this is different to the word Event (probability theory), event in the probability theory sense. It follows that \lambda is the expected number of ''arrivals'' that occur per unit of time.


Key properties

The previous definition has two important features shared by Poisson point processes in general: * the number of arrivals in each finite interval has a Poisson distribution; * the number of arrivals in disjoint intervals are independent random variables. Furthermore, it has a third feature related to just the homogeneous Poisson point process: * the Poisson distribution of the number of arrivals in each interval (a+t,b+t] only depends on the interval's length b-a. In other words, for any finite t>0, the random variable N(a+t,b+t] is independent of t, so it is also called a stationary Poisson process.


Law of large numbers

The quantity \lambda(b_i-a_i) can be interpreted as the expected or average number of points occurring in the interval (a_i,b_i], namely: : \operatorname E (a_i,b_i =\lambda(b_i-a_i), where \operatorname E denotes the expectation operator. In other words, the parameter \lambda of the Poisson process coincides with the ''density'' of points. Furthermore, the homogeneous Poisson point process adheres to its own form of the (strong) law of large numbers. More specifically, with probability one: : \lim_ \frac =\lambda, where \lim denotes the limit of a function, and \lambda is expected number of arrivals occurred per unit of time.


Memoryless property

The distance between two consecutive points of a point process on the real line will be an exponential random variable with parameter \lambda (or equivalently, mean 1/\lambda). This implies that the points have the
memoryless In probability and statistics, memorylessness is a property of probability distributions. It describes situations where previous failures or elapsed time does not affect future trials or further wait time. Only the geometric and exponential d ...
property: the existence of one point existing in a finite interval does not affect the probability (distribution) of other points existing, but this property has no natural equivalence when the Poisson process is defined on a space with higher dimensions.


Orderliness and simplicity

A point process with stationary increments is sometimes said to be ''orderly'' or ''regular'' if: : \Pr \ = o(\delta), where
little-o notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Pau ...
is being used. A point process is called a simple point process when the probability of any of its two points coinciding in the same position, on the underlying space, is zero. For point processes in general on the real line, the property of orderliness implies that the process is simple, which is the case for the homogeneous Poisson point process.


Martingale characterization

On the real line, the homogeneous Poisson point process has a connection to the theory of martingales via the following characterization: a point process is the homogeneous Poisson point process if and only if : N(-\infty,t]-\lambda t, is a martingale.E. Merzbach and D. Nualart. A characterization of the spatial poisson process and changing time. ''The Annals of Probability'', 14(4):1380–1390, 1986.


Relationship to other processes

On the real line, the Poisson process is a type of continuous-time
Markov process In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, ...
known as a
birth process In probability theory, a birth process or a pure birth process is a special case of a continuous-time Markov process and a generalisation of a Poisson process. It defines a continuous process which takes values in the natural numbers and can only ...
, a special case of the
birth–death process The birth–death process (or birth-and-death process) is a special case of continuous-time Markov process where the state transitions are of only two types: "births", which increase the state variable by one and "deaths", which decrease the stat ...
(with just births and zero deaths).A. Papoulis and S. U. Pillai. ''Probability, random variables, and stochastic processes''. Tata McGraw-Hill Education, 2002. More complicated processes with the
Markov property In probability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process, which means that its future evolution is independent of its history. It is named after the Russian mathematician Andrey Ma ...
, such as Markov arrival processes, have been defined where the Poisson process is a special case.


Restricted to the half-line

If the homogeneous Poisson process is considered just on the half-line [0,\infty), which can be the case when t represents time then the resulting process is not truly invariant under translation. In that case the Poisson process is no longer stationary, according to some definitions of stationarity.


Applications

There have been many applications of the homogeneous Poisson process on the real line in an attempt to model seemingly random and independent events occurring. It has a fundamental role in
queueing theory Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because th ...
, which is the probability field of developing suitable stochastic models to represent the random arrival and departure of certain phenomena. For example, customers arriving and being served or phone calls arriving at a phone exchange can be both studied with techniques from queueing theory.


Generalizations

The homogeneous Poisson process on the real line is considered one of the simplest stochastic processes for counting random numbers of points.D. Snyder and M. Miller. Random point processes in time and space 2e springer-verlag. ''New York, NY'', 1991. This process can be generalized in a number of ways. One possible generalization is to extend the distribution of interarrival times from the exponential distribution to other distributions, which introduces the stochastic process known as a renewal process. Another generalization is to define the Poisson point process on higher dimensional spaces such as the plane.


Spatial Poisson point process

A spatial Poisson process is a Poisson point process defined in the plane \textstyle \mathbb^2. For its mathematical definition, one first considers a bounded, open or closed (or more precisely, Borel measurable) region B of the plane. The number of points of a point process \textstyle N existing in this region \textstyle B\subset \mathbb^2 is a random variable, denoted by \textstyle N(B). If the points belong to a homogeneous Poisson process with parameter \textstyle \lambda>0, then the probability of \textstyle n points existing in \textstyle B is given by: : \Pr \=\frac e^ where \textstyle , B, denotes the area of \textstyle B. For some finite integer \textstyle k\geq 1, we can give the finite-dimensional distribution of the homogeneous Poisson point process by first considering a collection of disjoint, bounded Borel (measurable) sets \textstyle B_1,\dots,B_k. The number of points of the point process \textstyle N existing in \textstyle B_i can be written as \textstyle N(B_i). Then the homogeneous Poisson point process with parameter \textstyle \lambda>0 has the finite-dimensional distribution: : \Pr \=\prod_^k\frace^.


Applications

The spatial Poisson point process features prominently in spatial statistics, stochastic geometry, and
continuum percolation theory In mathematics and probability theory, continuum percolation theory is a branch of mathematics that extends discrete percolation theory to continuous space (often Euclidean space ). More specifically, the underlying points of discrete percolation fo ...
. This point process is applied in various physical sciences such as a model developed for alpha particles being detected. In recent years, it has been frequently used to model seemingly disordered spatial configurations of certain wireless communication networks. For example, models for cellular or mobile phone networks have been developed where it is assumed the phone network transmitters, known as base stations, are positioned according to a homogeneous Poisson point process.


Defined in higher dimensions

The previous homogeneous Poisson point process immediately extends to higher dimensions by replacing the notion of area with (high dimensional) volume. For some bounded region \textstyle B of Euclidean space \textstyle \mathbb^d, if the points form a homogeneous Poisson process with parameter \textstyle \lambda>0, then the probability of \textstyle n points existing in \textstyle B\subset \mathbb^d is given by: : \Pr \=\frace^ where \textstyle , B, now denotes the \textstyle d-dimensional volume of \textstyle B. Furthermore, for a collection of disjoint, bounded Borel sets \textstyle B_1,\dots,B_k \subset \mathbb^d, let \textstyle N(B_i) denote the number of points of \textstyle N existing in \textstyle B_i. Then the corresponding homogeneous Poisson point process with parameter \textstyle \lambda>0 has the finite-dimensional distribution: : \Pr \=\prod_^k\frac e^. Homogeneous Poisson point processes do not depend on the position of the underlying space through its parameter \textstyle \lambda, which implies it is both a stationary process (invariant to translation) and an isotropic (invariant to rotation) stochastic process. Similarly to the one-dimensional case, the homogeneous point process is restricted to some bounded subset of \mathbb^d, then depending on some definitions of stationarity, the process is no longer stationary.


Points are uniformly distributed

If the homogeneous point process is defined on the real line as a mathematical model for occurrences of some phenomenon, then it has the characteristic that the positions of these occurrences or events on the real line (often interpreted as time) will be uniformly distributed. More specifically, if an event occurs (according to this process) in an interval \textstyle (a,b] where \textstyle a \leq b, then its location will be a uniform random variable defined on that interval. Furthermore, the homogeneous point process is sometimes called the ''uniform'' Poisson point process (see
Terminology Terminology is a group of specialized words and respective meanings in a particular field, and also the study of such terms and their use; the latter meaning is also known as terminology science. A ''term'' is a word, Compound (linguistics), com ...
). This uniformity property extends to higher dimensions in the Cartesian coordinate, but not in, for example, polar coordinates.


Inhomogeneous Poisson point process

The inhomogeneous or nonhomogeneous Poisson point process (see
Terminology Terminology is a group of specialized words and respective meanings in a particular field, and also the study of such terms and their use; the latter meaning is also known as terminology science. A ''term'' is a word, Compound (linguistics), com ...
) is a Poisson point process with a Poisson parameter set as some location-dependent function in the underlying space on which the Poisson process is defined. For Euclidean space \textstyle \mathbb^d, this is achieved by introducing a locally integrable positive function \lambda\colon\mathbb^d\to[0,\infty), such that for every bounded region \textstyle B the (\textstyle d-dimensional) volume integral of \textstyle \lambda (x) over region \textstyle B is finite. In other words, if this integral, denoted by \textstyle \Lambda (B), is: : \Lambda (B)=\int_B \lambda(x)\,\mathrm dx < \infty, where \textstyle is a (\textstyle d-dimensional) volume element, then for every collection of disjoint bounded Borel measurable sets \textstyle B_1,\dots,B_k, an inhomogeneous Poisson process with (intensity) function \textstyle \lambda(x) has the finite-dimensional distribution: : \Pr \=\prod_^k\frac e^. Furthermore, \textstyle \Lambda (B) has the interpretation of being the expected number of points of the Poisson process located in the bounded region \textstyle B, namely : \Lambda (B)= \operatorname E (B).


Defined on the real line

On the real line, the inhomogeneous or non-homogeneous Poisson point process has mean measure given by a one-dimensional integral. For two real numbers \textstyle a and \textstyle b, where \textstyle a\leq b, denote by \textstyle N(a,b] the number points of an inhomogeneous Poisson process with intensity function \textstyle \lambda(t) occurring in the interval \textstyle (a,b]. The probability of \textstyle n points existing in the above interval \textstyle (a,b] is given by: : \Pr \=\frac e^. where the mean or intensity measure is: : \Lambda(a,b)=\int_a^b \lambda (t)\,\mathrm dt, which means that the random variable \textstyle N(a,b] is a Poisson random variable with mean \textstyle \operatorname E (a,b = \Lambda(a,b). A feature of the one-dimension setting, is that an inhomogeneous Poisson process can be transformed into a homogeneous by a monotone transformation or mapping, which is achieved with the inverse of \textstyle \Lambda .


Counting process interpretation

The inhomogeneous Poisson point process, when considered on the positive half-line, is also sometimes defined as a counting process. With this interpretation, the process, which is sometimes written as \textstyle \, represents the total number of occurrences or events that have happened up to and including time \textstyle t. A counting process is said to be an inhomogeneous Poisson counting process if it has the four properties: * \textstyle N(0)=0; * has independent increments; * \textstyle \Pr\ =\lambda(t)h + o(h); and * \textstyle \Pr \ = o(h), where \textstyle o(h) is asymptotic or
little-o notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Pau ...
for \textstyle o(h)/h\rightarrow 0 as \textstyle h\rightarrow 0. In the case of point processes with refractoriness (e.g., neural spike trains) a stronger version of property 4 applies: \Pr \ = o(h^2). The above properties imply that \textstyle N(t+h) - N(t) is a Poisson random variable with the parameter (or mean) : \operatorname E (t+h) - N(t)= \int_t^\lambda (s) \, ds, which implies : \operatorname E (h)\int_0^h \lambda (s) \, ds.


Spatial Poisson process

An inhomogeneous Poisson process defined in the plane \textstyle \mathbb^2 is called a spatial Poisson process It is defined with intensity function and its intensity measure is obtained performing a surface integral of its intensity function over some region. For example, its intensity function (as a function of Cartesian coordinates x and \textstyle y) can be : \lambda(x,y)= e^, so the corresponding intensity measure is given by the surface integral : \Lambda(B)= \int_B e^\,\mathrm dx\,\mathrm dy, where B is some bounded region in the plane \mathbb^2.


In higher dimensions

In the plane, \Lambda(B) corresponds to a surface integral while in \mathbb^d the integral becomes a ( d-dimensional) volume integral.


Applications

When the real line is interpreted as time, the inhomogeneous process is used in the fields of counting processes and in queueing theory. Examples of phenomena which have been represented by or appear as an inhomogeneous Poisson point process include: * Goals being scored in a soccer game.A. Heuer, C. Mueller, and O. Rubner. Soccer: Is scoring goals a predictable Poissonian process? ''EPL'', 89(3):38007, 2010. * Defects in a circuit boardJ. Y. Hwang, W. Kuo, and C. Ha. Modeling of integrated circuit yield using a spatial nonhomogeneous poisson process. ''Semiconductor Manufacturing, IEEE Transactions on'', 24(3):377–384, 2011. In the plane, the Poisson point process is important in the related disciplines of stochastic geometry and spatial statistics. The intensity measure of this point process is dependent on the location of underlying space, which means it can be used to model phenomena with a density that varies over some region. In other words, the phenomena can be represented as points that have a location-dependent density. This processes has been used in various disciplines and uses include the study of salmon and sea lice in the oceans,M. Krkoek, M. A. Lewis, and J. P. Volpe. Transmission dynamics of parasitic sea lice from farm to wild salmon. ''Proceedings of the Royal Society B: Biological Sciences'', 272(1564):689–696, 2005. forestry, and search problems.P. A. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes by thinning. ''Naval Research Logistics Quarterly'', 26(3):403–413, 1979.


Interpretation of the intensity function

The Poisson intensity function \lambda(x) has an interpretation, considered intuitive, with the volume element \mathrm dx in the infinitesimal sense: \lambda(x)\,\mathrm dx is the infinitesimal probability of a point of a Poisson point process existing in a region of space with volume \mathrm dx located at x. For example, given a homogeneous Poisson point process on the real line, the probability of finding a single point of the process in a small interval of width \delta is approximately \lambda \delta. In fact, such intuition is how the Poisson point process is sometimes introduced and its distribution derived.


Simple point process

If a Poisson point process has an intensity measure that is a locally finite and diffuse (or non-atomic), then it is a simple point process. For a simple point process, the probability of a point existing at a single point or location in the underlying (state) space is either zero or one. This implies that, with probability one, no two (or more) points of a Poisson point process coincide in location in the underlying space.


Simulation

Simulating a Poisson point process on a computer is usually done in a bounded region of space, known as a simulation ''window'', and requires two steps: appropriately creating a random number of points and then suitably placing the points in a random manner. Both these two steps depend on the specific Poisson point process that is being simulated.


Step 1: Number of points

The number of points N in the window, denoted here by W, needs to be simulated, which is done by using a (pseudo)- random number generating function capable of simulating Poisson random variables.


Homogeneous case

For the homogeneous case with the constant \lambda, the mean of the Poisson random variable N is set to \lambda , W, where , W, is the length, area or ( d-dimensional) volume of W.


Inhomogeneous case

For the inhomogeneous case, \lambda , W, is replaced with the ( d-dimensional) volume integral : \Lambda(W)=\int_W\lambda(x)\,\mathrm dx


Step 2: Positioning of points

The second stage requires randomly placing the \textstyle N points in the window \textstyle W.


Homogeneous case

For the homogeneous case in one dimension, all points are uniformly and independently placed in the window or interval \textstyle W. For higher dimensions in a Cartesian coordinate system, each coordinate is uniformly and independently placed in the window \textstyle W. If the window is not a subspace of Cartesian space (for example, inside a unit sphere or on the surface of a unit sphere), then the points will not be uniformly placed in \textstyle W, and suitable change of coordinates (from Cartesian) are needed.


Inhomogeneous case

For the inhomogeneous case, a couple of different methods can be used depending on the nature of the intensity function \textstyle \lambda(x). If the intensity function is sufficiently simple, then independent and random non-uniform (Cartesian or other) coordinates of the points can be generated. For example, simulating a Poisson point process on a circular window can be done for an isotropic intensity function (in polar coordinates \textstyle r and \textstyle \theta), implying it is rotationally variant or independent of \textstyle \theta but dependent on \textstyle r, by a change of variable in \textstyle r if the intensity function is sufficiently simple. For more complicated intensity functions, one can use an
acceptance-rejection method In numerical analysis and computational statistics, rejection sampling is a basic technique used to generate observations from a probability distribution, distribution. It is also commonly called the acceptance-rejection method or "accept-reject al ...
, which consists of using (or 'accepting') only certain random points and not using (or 'rejecting') the other points, based on the ratio:. : \frac=\frac where \textstyle x_i is the point under consideration for acceptance or rejection. That is, a location is uniformly randomly selected for consideration, then to determine whether to place a sample at that location a uniformly randomly drawn number in ,1 is compared to the probability density function \frac , accepting if it is smaller than the probability density function, and repeating until the previously chosen number of samples have been drawn.


General Poisson point process

In
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingl ...
, the Poisson point process can be further generalized to what is sometimes known as the general Poisson point process or general Poisson process by using a
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
\textstyle \Lambda, which is a
locally finite measure In mathematics, a locally finite measure is a measure for which every point of the measure space has a neighbourhood of finite measure. Definition Let (X, T) be a Hausdorff topological space and let \Sigma be a \sigma-algebra on X that contain ...
. In general, this Radon measure \textstyle \Lambda can be atomic, which means multiple points of the Poisson point process can exist in the same location of the underlying space. In this situation, the number of points at \textstyle x is a Poisson random variable with mean \textstyle \Lambda(). But sometimes the converse is assumed, so the Radon measure \textstyle \Lambda is diffuse or non-atomic. A point process \textstyle is a general Poisson point process with intensity \textstyle \Lambda if it has the two following properties: * the number of points in a bounded
Borel set In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets ...
\textstyle B is a Poisson random variable with mean \textstyle \Lambda(B). In other words, denote the total number of points located in \textstyle B by \textstyle (B), then the probability of random variable \textstyle (B) being equal to \textstyle n is given by: :: \Pr \=\frac e^ * the number of points in \textstyle n disjoint Borel sets forms \textstyle n independent random variables. The Radon measure \textstyle \Lambda maintains its previous interpretation of being the expected number of points of \textstyle located in the bounded region \textstyle B, namely : \Lambda (B)= \operatorname E (B). Furthermore, if \textstyle \Lambda is absolutely continuous such that it has a density (which is the Radon–Nikodym density or derivative) with respect to the Lebesgue measure, then for all Borel sets \textstyle B it can be written as: : \Lambda (B)=\int_B \lambda(x)\,\mathrm dx, where the density \textstyle \lambda(x) is known, among other terms, as the intensity function.


History


Poisson distribution

Despite its name, the Poisson point process was neither discovered nor studied by its namesake. It is cited as an example of Stigler's law of eponymy. The name arises from the process's inherent relation to the Poisson distribution, derived by Poisson as a limiting case of the
binomial distribution In probability theory and statistics, the binomial distribution with parameters and is the discrete probability distribution of the number of successes in a sequence of statistical independence, independent experiment (probability theory) ...
. It describes the
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
of the sum of \textstyle n
Bernoulli trial In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is ...
s with probability \textstyle p, often likened to the number of heads (or tails) after \textstyle n biased coin flips with the probability of a head (or tail) occurring being \textstyle p. For some positive constant \textstyle \Lambda>0, as \textstyle n increases towards infinity and \textstyle p decreases towards zero such that the product \textstyle np=\Lambda is fixed, the Poisson distribution more closely approximates that of the binomial. Poisson derived the Poisson distribution, published in 1841, by examining the binomial distribution in the limit of \textstyle p (to zero) and \textstyle n (to infinity). It only appears once in all of Poisson's work, and the result was not well known during his time. Over the following years others used the distribution without citing Poisson, including Philipp Ludwig von Seidel and Ernst Abbe. At the end of the 19th century, Ladislaus Bortkiewicz studied the distribution, citing Poisson, using real data on the number of deaths from horse kicks in the Prussian army.


Discovery

There are a number of claims for early uses or discoveries of the Poisson point process. For example,
John Michell John Michell (; 25 December 1724 – 21 April 1793) was an English natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, optics, and gravitation. Considered "on ...
in 1767, a decade before Poisson was born, was interested in the probability a star being within a certain region of another star under the erroneous assumption that the stars were "scattered by mere chance", and studied an example consisting of the six brightest
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s in the
Pleiades The Pleiades (), also known as Seven Sisters and Messier 45 (M45), is an Asterism (astronomy), asterism of an open cluster, open star cluster containing young Stellar classification#Class B, B-type stars in the northwest of the constellation Tau ...
, without deriving the Poisson distribution. This work inspired
Simon Newcomb Simon Newcomb (March 12, 1835 – July 11, 1909) was a Canadians, Canadian–Americans, American astronomer, applied mathematician, and autodidactic polymath. He served as Professor of Mathematics in the United States Navy and at Johns Hopkins ...
to study the problem and to calculate the Poisson distribution as an approximation for the binomial distribution in 1860. At the beginning of the 20th century the Poisson process (in one dimension) would arise independently in different situations. In Sweden 1903, Filip Lundberg published a thesis containing work, now considered fundamental and pioneering, where he proposed to model insurance claims with a homogeneous Poisson process. In
Denmark Denmark is a Nordic countries, Nordic country in Northern Europe. It is the metropole and most populous constituent of the Kingdom of Denmark,, . also known as the Danish Realm, a constitutionally unitary state that includes the Autonomous a ...
A.K. Erlang derived the Poisson distribution in 1909 when developing a mathematical model for the number of incoming phone calls in a finite time interval. Erlang unaware of Poisson's earlier work and assumed that the number phone calls arriving in each interval of time were independent of each other. He then found the limiting case, which is effectively recasting the Poisson distribution as a limit of the binomial distribution. In 1910
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
and
Hans Geiger Johannes Wilhelm Geiger ( , ; ; 30 September 1882 – 24 September 1945) was a German nuclear physicist. He is known as the inventor of the Geiger counter, a device used to detect ionizing radiation, and for carrying out the Rutherford scatt ...
published experimental results on counting alpha particles. Their experimental work had mathematical contributions from Harry Bateman, who derived Poisson probabilities as a solution to a family of differential equations, though the solution had been derived earlier, resulting in the independent discovery of the Poisson process. After this time, there were many studies and applications of the Poisson process, but its early history is complicated, which has been explained by the various applications of the process in numerous fields by biologists, ecologists, engineers and various physical scientists.


Early applications

The years after 1909 led to a number of studies and applications of the Poisson point process, however, its early history is complex, which has been explained by the various applications of the process in numerous fields by biologists, ecologists, engineers and others working in the physical sciences. The early results were published in different languages and in different settings, with no standard terminology and notation used. For example, in 1922 Swedish
chemist A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a graduated scientist trained in the study of chemistry, or an officially enrolled student in the field. Chemists study the composition of ...
and
Nobel Laureate The Nobel Prizes (, ) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institutet, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in th ...
Theodor Svedberg Theodor Svedberg (30 August 1884 – 25 February 1971; also known as The Svedberg) was a Swedish chemist and Nobel laureate for his research on colloids and proteins using the ultracentrifuge. Svedberg was active at Uppsala University from the ...
proposed a model in which a spatial Poisson point process is the underlying process to study how plants are distributed in plant communities. A number of mathematicians started studying the process in the early 1930s, and important contributions were made by
Andrey Kolmogorov Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet ...
,
William Feller William "Vilim" Feller (July 7, 1906 – January 14, 1970), born Vilibald Srećko Feller, was a Croatian–American mathematician specializing in probability theory. Early life and education Feller was born in Zagreb to Ida Oemichen-Perc, a Cro ...
and Aleksandr Khinchin, among others. In the field of
teletraffic engineering Teletraffic engineering, or telecommunications traffic engineering is the application of transportation traffic engineering theory to telecommunications. Teletraffic engineers use their knowledge of statistics including queuing theory, the natu ...
, mathematicians and statisticians studied and used Poisson and other point processes.


History of terms

The Swede Conny Palm in his 1943 dissertation studied the Poisson and other point processes in the one-dimensional setting by examining them in terms of the statistical or stochastic dependence between the points in time. In his work exists the first known recorded use of the term ''point processes'' as ''Punktprozesse'' in German. It is believed that William Feller was the first in print to refer to it as the ''Poisson process'' in a 1940 paper. Although the Swede Ove Lundberg used the term ''Poisson process'' in his 1940 PhD dissertation, in which Feller was acknowledged as an influence,J. Grandell. ''Mixed poisson processes'', volume 77. CRC Press, 1997. it has been claimed that Feller coined the term before 1940. It has been remarked that both Feller and Lundberg used the term as though it were well-known, implying it was already in spoken use by then. Feller worked from 1936 to 1939 alongside
Harald Cramér Harald Cramér (; 25 September 1893 – 5 October 1985) was a Swedish mathematician, actuary, and statistician, specializing in mathematical statistics and probabilistic number theory. John Kingman described him as "one of the giants of statis ...
at
Stockholm University Stockholm University (SU) () is a public university, public research university in Stockholm, Sweden, founded as a college in 1878, with university status since 1960. With over 33,000 students at four different faculties: law, humanities, social ...
, where Lundberg was a PhD student under Cramér who did not use the term ''Poisson process'' in a book by him, finished in 1936, but did in subsequent editions, which his has led to the speculation that the term ''Poisson process'' was coined sometime between 1936 and 1939 at the Stockholm University.


Terminology

The terminology of point process theory in general has been criticized for being too varied. In addition to the word ''point'' often being omitted, the homogeneous Poisson (point) process is also called a ''stationary'' Poisson (point) process, as well as ''uniform'' Poisson (point) process. The inhomogeneous Poisson point process, as well as being called ''nonhomogeneous'', is also referred to as the ''non-stationary'' Poisson process. The term ''point process'' has been criticized, as the term ''process'' can suggest over time and space, so ''random point field'', resulting in the terms ''Poisson random point field'' or ''Poisson point field'' being also used.G. Mikhailov and T. Averina. Statistical modeling of inhomogeneous random functions on the basis of poisson point fields. In ''Doklady Mathematics'', volume 82, pages 701–704. Springer, 2010. A point process is considered, and sometimes called, a random counting measure,I. Molchanov. ''Theory of random sets''. Springer Science \& Business Media, 2006. hence the Poisson point process is also referred to as a ''Poisson random measure'',K. Sato. Lévy processes and infinite divisibility, 1999. a term used in the study of Lévy processes,V. Mandrekar and B. Rüdiger. ''Stochastic Integration in Banach Spaces''. Springer, 2015. but some choose to use the two terms for Poisson points processes defined on two different underlying spaces.D. Applebaum. ''Lévy processes and stochastic calculus''. Cambridge university press, 2009. The underlying mathematical space of the Poisson point process is called a carrier space,E. F. Harding and R. Davidson. ''Stochastic geometry: a tribute to the memory of Rollo Davidson''. Wiley, 1974.L. H. Chen and A. Xia. Stein's method, Palm theory and Poisson process approximation. ''Annals of probability'', pages 2545–2569, 2004. or state space, though the latter term has a different meaning in the context of stochastic processes. In the context of point processes, the term "state space" can mean the space on which the point process is defined such as the real line, which corresponds to the index set or parameter set in stochastic process terminology. The measure \textstyle \Lambda is called the ''intensity measure'', ''mean measure'', or ''parameter measure'', as there are no standard terms. If \textstyle \Lambda has a derivative or density, denoted by \textstyle \lambda(x), is called the ''intensity function'' of the Poisson point process. For the homogeneous Poisson point process, the derivative of the intensity measure is simply a constant \textstyle \lambda>0, which can be referred to as the ''rate'', usually when the underlying space is the real line, or the ''intensity''. It is also called the ''mean rate'' or the ''mean density'' or ''rate ''. For \textstyle \lambda=1, the corresponding process is sometimes referred to as the ''standard Poisson'' (point) process.J. Grandell. Point processes and random measures. ''Advances in Applied Probability'', pages 502–526, 1977. The extent of the Poisson point process is sometimes called the ''exposure''.


Notation

The notation of the Poisson point process depends on its setting and the field it is being applied in. For example, on the real line, the Poisson process, both homogeneous or inhomogeneous, is sometimes interpreted as a counting process, and the notation \textstyle \ is used to represent the Poisson process. Another reason for varying notation is due to the theory of point processes, which has a couple of mathematical interpretations. For example, a simple Poisson point process may be considered as a random set, which suggests the notation \textstyle x\in N, implying that \textstyle x is a random point belonging to or being an element of the Poisson point process \textstyle N. Another, more general, interpretation is to consider a Poisson or any other point process as a random counting measure, so one can write the number of points of a Poisson point process \textstyle being found or located in some (Borel measurable) region \textstyle B as \textstyle N(B), which is a random variable. These different interpretations results in notation being used from mathematical fields such as measure theory and set theory. For general point processes, sometimes a subscript on the point symbol, for example \textstyle x, is included so one writes (with set notation) \textstyle x_i\in N instead of \textstyle x\in N, and \textstyle x can be used for the
bound variable In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. Some older books use the terms real variable and apparent variable for f ...
in integral expressions such as Campbell's theorem, instead of denoting random points. Sometimes an uppercase letter denotes the point process, while a lowercase denotes a point from the process, so, for example, the point \textstyle x or \textstyle x_i belongs to or is a point of the point process \textstyle X, and be written with set notation as \textstyle x\in X or \textstyle x_i\in X. Furthermore, the set theory and integral or measure theory notation can be used interchangeably. For example, for a point process \textstyle N defined on the Euclidean state space \textstyle and a (measurable) function \textstyle f on \textstyle \mathbb^d , the expression : \int_ f(x)\,\mathrm dN(x)=\sum\limits_ f(x_i), demonstrates two different ways to write a summation over a point process (see also
Campbell's theorem (probability) In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the Expected value, expectation of a Function (mathematics), function summed over a point proce ...
). More specifically, the integral notation on the left-hand side is interpreting the point process as a random counting measure while the sum on the right-hand side suggests a random set interpretation.


Functionals and moment measures

In probability theory, operations are applied to random variables for different purposes. Sometimes these operations are regular expectations that produce the average or variance of a random variable. Others, such as characteristic functions (or Laplace transforms) of a random variable can be used to uniquely identify or characterize random variables and prove results like the central limit theorem.A. Karr. ''Probability''. Springer Texts in Statistics Series. Springer-Verlag, 1993. In the theory of point processes there exist analogous mathematical tools which usually exist in the forms of measures and functionals instead of moments and functions respectively.


Laplace functionals

For a Poisson point process \textstyle N with intensity measure \textstyle \Lambda on some space X, the Laplace functional is given by: : L_N(f)= \mathbb e^ = e^, One version of Campbell's theorem involves the Laplace functional of the Poisson point process.


Probability generating functionals

The probability generating function of non-negative integer-valued random variable leads to the probability generating functional being defined analogously with respect to any non-negative bounded function \textstyle v on \textstyle \mathbb^d such that \textstyle 0\leq v(x) \leq 1. For a point process \textstyle the probability generating functional is defined as: : G(v)=\operatorname E \left prod_ v(x) \right where the product is performed for all the points in N . If the intensity measure \textstyle \Lambda of \textstyle is locally finite, then the G is well-defined for any measurable function \textstyle u on \textstyle \mathbb^d. For a Poisson point process with intensity measure \textstyle \Lambda the generating functional is given by: : G(v)=e^, which in the homogeneous case reduces to : G(v)=e^.


Moment measure

For a general Poisson point process with intensity measure \textstyle \Lambda the first moment measure is its intensity measure: : M^1(B)=\Lambda(B), which for a homogeneous Poisson point process with constant intensity \textstyle \lambda means: : M^1(B)=\lambda, B, , where \textstyle , B, is the length, area or volume (or more generally, the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
) of \textstyle B.


The Mecke equation

The Mecke equation characterizes the Poisson point process. Let \mathbb_\sigma be the space of all \sigma-finite measures on some general space \mathcal. A point process \eta with intensity \lambda on \mathcal is a Poisson point process if and only if for all measurable functions f:\mathcal\times\mathbb_\sigma\to \mathbb_+ the following holds :E \left int f(x,\eta)\eta(\mathrmx)\right\int E \left f(x,\eta+\delta_x) \right\lambda(\mathrmx) For further details see.


Factorial moment measure

For a general Poisson point process with intensity measure \textstyle \Lambda the \textstyle n-th factorial moment measure is given by the expression: : M^(B_1\times\cdots\times B_n)=\prod_^n Lambda(B_i) where \textstyle \Lambda is the intensity measure or first moment measure of \textstyle , which for some Borel set \textstyle B is given by : \Lambda(B)=M^1(B)=\operatorname E (B) For a homogeneous Poisson point process the \textstyle n-th factorial moment measure is simply: : M^(B_1\times\cdots\times B_n)=\lambda^n \prod_^n , B_i, , where \textstyle , B_i, is the length, area, or volume (or more generally, the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
) of \textstyle B_i. Furthermore, the \textstyle n-th factorial moment density is: : \mu^(x_1,\dots,x_n)=\lambda^n.


Avoidance function

The avoidance function or void probability \textstyle v of a point process \textstyle is defined in relation to some set \textstyle B, which is a subset of the underlying space \textstyle \mathbb^d, as the probability of no points of \textstyle existing in \textstyle B. More precisely, for a test set \textstyle B, the avoidance function is given by: : v(B)=\Pr \. For a general Poisson point process \textstyle with intensity measure \textstyle \Lambda, its avoidance function is given by: : v(B)=e^


Rényi's theorem

Simple point processes are completely characterized by their void probabilities. In other words, complete information of a simple point process is captured entirely in its void probabilities, and two simple point processes have the same void probabilities if and if only if they are the same point processes. The case for Poisson process is sometimes known as Rényi's theorem, which is named after Alfréd Rényi who discovered the result for the case of a homogeneous point process in one-dimension. In one form, the Rényi's theorem says for a diffuse (or non-atomic) Radon measure \textstyle \Lambda on \textstyle \mathbb^d and a set \textstyle A is a finite union of rectangles (so not Borel) that if \textstyle N is a countable subset of \textstyle \mathbb^d such that: : \Pr \ = v(A) = e^ then \textstyle is a Poisson point process with intensity measure \textstyle \Lambda.


Point process operations

Mathematical operations can be performed on point processes to get new point processes and develop new mathematical models for the locations of certain objects. One example of an operation is known as thinning which entails deleting or removing the points of some point process according to a rule, creating a new process with the remaining points (the deleted points also form a point process).


Thinning

For the Poisson process, the independent \textstyle p(x)-thinning operations results in another Poisson point process. More specifically, a \textstyle p(x)-thinning operation applied to a Poisson point process with intensity measure \textstyle \Lambda gives a point process of removed points that is also Poisson point process \textstyle _p with intensity measure \textstyle \Lambda_p, which for a bounded Borel set \textstyle B is given by: : \Lambda_p(B)= \int_B p(x)\,\Lambda(\mathrm dx) This thinning result of the Poisson point process is sometimes known as Prekopa's theorem. Furthermore, after randomly thinning a Poisson point process, the kept or remaining points also form a Poisson point process, which has the intensity measure : \Lambda_p(B)= \int_B (1-p(x))\,\Lambda(\mathrm dx). The two separate Poisson point processes formed respectively from the removed and kept points are stochastically independent of each other. In other words, if a region is known to contain \textstyle n kept points (from the original Poisson point process), then this will have no influence on the random number of removed points in the same region. This ability to randomly create two independent Poisson point processes from one is sometimes known as ''splitting'' D. Bertsekas and J. Tsitsiklis. Introduction to probability, ser. ''Athena Scientific optimization and computation series. Athena Scientific'', 2008.J. F. Hayes. ''Modeling and analysis of computer communications networks''. Perseus Publishing, 1984. the Poisson point process.


Superposition

If there is a countable collection of point processes \textstyle N_1,N_2,\dots, then their superposition, or, in set theory language, their union, which is : N=\bigcup_^\infty N_i, also forms a point process. In other words, any points located in any of the point processes \textstyle N_1,N_2\dots will also be located in the superposition of these point processes \textstyle .


Superposition theorem

The superposition theorem of the Poisson point process says that the superposition of independent Poisson point processes \textstyle N_1,N_2\dots with mean measures \textstyle \Lambda_1,\Lambda_2,\dots will also be a Poisson point process with mean measure : \Lambda=\sum_^\infty \Lambda_i. In other words, the union of two (or countably more) Poisson processes is another Poisson process. If a point x is sampled from a countable n union of Poisson processes, then the probability that the point \textstyle x belongs to the jth Poisson process N_j is given by: : \Pr \=\frac. For two homogeneous Poisson processes with intensities \lambda_1,\lambda_2\dots, the two previous expressions reduce to : \lambda=\sum_^\infty \lambda_i, and : \Pr \=\frac.


Clustering

The operation clustering is performed when each point \textstyle x of some point process \textstyle is replaced by another (possibly different) point process. If the original process \textstyle is a Poisson point process, then the resulting process \textstyle _c is called a Poisson cluster point process.


Random displacement

A mathematical model may require randomly moving points of a point process to other locations on the underlying mathematical space, which gives rise to a point process operation known as displacement or translation. The Poisson point process has been used to model, for example, the movement of plants between generations, owing to the displacement theorem, which loosely says that the random independent displacement of points of a Poisson point process (on the same underlying space) forms another Poisson point process.


Displacement theorem

One version of the displacement theorem involves a Poisson point process \textstyle on \textstyle \mathbb^d with intensity function \textstyle \lambda(x). It is then assumed the points of \textstyle are randomly displaced somewhere else in \textstyle \mathbb^d so that each point's displacement is independent and that the displacement of a point formerly at \textstyle x is a random vector with a probability density \textstyle \rho(x,\cdot). Then the new point process \textstyle N_D is also a Poisson point process with intensity function : \lambda_D(y)=\int_ \lambda(x) \rho(x,y)\,\mathrm dx. If the Poisson process is homogeneous with \textstyle\lambda(x) = \lambda > 0 and if \rho(x, y) is a function of y-x, then : \lambda_D(y)=\lambda. In other words, after each random and independent displacement of points, the original Poisson point process still exists. The displacement theorem can be extended such that the Poisson points are randomly displaced from one Euclidean space \textstyle \mathbb^d to another Euclidean space \textstyle \mathbb^, where \textstyle d'\geq 1 is not necessarily equal to \textstyle d.


Mapping

Another property that is considered useful is the ability to map a Poisson point process from one underlying space to another space.


Mapping theorem

If the mapping (or transformation) adheres to some conditions, then the resulting mapped (or transformed) collection of points also form a Poisson point process, and this result is sometimes referred to as the mapping theorem. The theorem involves some Poisson point process with mean measure \textstyle \Lambda on some underlying space. If the locations of the points are mapped (that is, the point process is transformed) according to some function to another underlying space, then the resulting point process is also a Poisson point process but with a different mean measure \textstyle \Lambda'. More specifically, one can consider a (Borel measurable) function \textstyle f that maps a point process \textstyle with intensity measure \textstyle \Lambda from one space \textstyle S, to another space \textstyle T in such a manner so that the new point process \textstyle ' has the intensity measure: : \Lambda(B)'=\Lambda(f^(B)) with no atoms, where \textstyle B is a Borel set and \textstyle f^ denotes the inverse of the function \textstyle f. If \textstyle is a Poisson point process, then the new process \textstyle ' is also a Poisson point process with the intensity measure \textstyle \Lambda'.


Approximations with Poisson point processes

The tractability of the Poisson process means that sometimes it is convenient to approximate a non-Poisson point process with a Poisson one. The overall aim is to approximate both the number of points of some point process and the location of each point by a Poisson point process.L. H. Chen, A. Röllin, et al. Approximating dependent rare events. ''Bernoulli'', 19(4):1243–1267, 2013. There a number of methods that can be used to justify, informally or rigorously, approximating the occurrence of random events or phenomena with suitable Poisson point processes. The more rigorous methods involve deriving upper bounds on the probability metrics between the Poisson and non-Poisson point processes, while other methods can be justified by less formal heuristics.R. Arratia, S. Tavare, et al. . ''The Annals of Probability'', 21(4):2269–2279, 1993.


Clumping heuristic

One method for approximating random events or phenomena with Poisson processes is called the clumping heuristic.D. Aldous. ''Poisson Clumping Heuristic''. Wiley Online Library, 1989. The general heuristic or principle involves using the Poisson point process (or Poisson distribution) to approximate events, which are considered rare or unlikely, of some stochastic process. In some cases these rare events are close to being independent, hence a Poisson point process can be used. When the events are not independent, but tend to occur in clusters or ''clumps'', then if these clumps are suitably defined such that they are approximately independent of each other, then the number of clumps occurring will be close to a Poisson random variable and the locations of the clumps will be close to a Poisson process.


Stein's method

Stein's method is a mathematical technique originally developed for approximating random variables such as Gaussian and Poisson variables, which has also been applied to point processes. Stein's method can be used to derive upper bounds on probability metrics, which give way to quantify how different two random mathematical objects vary stochastically.A. D. Barbour and T. C. Brown. Stein's method and point process approximation. ''Stochastic Processes and their Applications'', 43(1):9–31, 1992. Upperbounds on probability metrics such as
total variation In mathematics, the total variation identifies several slightly different concepts, related to the (local property, local or global) structure of the codomain of a Function (mathematics), function or a measure (mathematics), measure. For a real ...
and Wasserstein distance have been derived. Researchers have applied Stein's method to Poisson point processes in a number of ways, such as using Palm calculus. Techniques based on Stein's method have been developed to factor into the upper bounds the effects of certain point process operations such as thinning and superposition.D. Schuhmacher. Distance estimates for dependent superpositions of point processes. ''Stochastic processes and their applications'', 115(11):1819–1837, 2005.D. Schuhmacher. Distance estimates for poisson process approximations of dependent thinnings. ''Electronic Journal of Probability'', 10:165–201, 2005. Stein's method has also been used to derive upper bounds on metrics of Poisson and other processes such as the Cox point process, which is a Poisson process with a random intensity measure.


Convergence to a Poisson point process

In general, when an operation is applied to a general point process the resulting process is usually not a Poisson point process. For example, if a point process, other than a Poisson, has its points randomly and independently displaced, then the process would not necessarily be a Poisson point process. However, under certain mathematical conditions for both the original point process and the random displacement, it has been shown via limit theorems that if the points of a point process are repeatedly displaced in a random and independent manner, then the finite-distribution of the point process will converge (weakly) to that of a Poisson point process. Similar convergence results have been developed for thinning and superposition operations that show that such repeated operations on point processes can, under certain conditions, result in the process converging to a Poisson point processes, provided a suitable rescaling of the intensity measure (otherwise values of the intensity measure of the resulting point processes would approach zero or infinity). Such convergence work is directly related to the results known as the Palm–Khinchin equations, which has its origins in the work of Conny Palm and Aleksandr Khinchin, and help explains why the Poisson process can often be used as a mathematical model of various random phenomena.


Generalizations of Poisson point processes

The Poisson point process can be generalized by, for example, changing its intensity measure or defining on more general mathematical spaces. These generalizations can be studied mathematically as well as used to mathematically model or represent physical phenomena.


Poisson-type random measures

The Poisson-type random measures (PT) are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed under Point process operation#Thinning. These random measures are examples of the mixed binomial process and share the distributional self-similarity property of the Poisson random measure. They are the only members of the canonical non-negative
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
family of distributions to possess this property and include the
Poisson distribution In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known const ...
,
negative binomial distribution In probability theory and statistics, the negative binomial distribution, also called a Pascal distribution, is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Berno ...
, and
binomial distribution In probability theory and statistics, the binomial distribution with parameters and is the discrete probability distribution of the number of successes in a sequence of statistical independence, independent experiment (probability theory) ...
. The Poisson random measure is independent on disjoint subspaces, whereas the other PT random measures (negative binomial and binomial) have positive and negative covariances. The PT random measures are discussedCaleb Bastian, Gregory Rempala. Throwing stones and collecting bones: Looking for Poisson-like random measures, Mathematical Methods in the Applied Sciences, 2020. doi:10.1002/mma.6224 and include the Poisson random measure, negative binomial random measure, and binomial random measure.


Poisson point processes on more general spaces

For mathematical models the Poisson point process is often defined in Euclidean space, but has been generalized to more abstract spaces and plays a fundamental role in the study of random measures, which requires an understanding of mathematical fields such as probability theory, measure theory and topology. In general, the concept of distance is of practical interest for applications, while topological structure is needed for Palm distributions, meaning that point processes are usually defined on mathematical spaces with metrics.A. E. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes. ''Handbook of spatial statistics'', Chapter 9. CRC press, 2010. Furthermore, a realization of a point process can be considered as a counting measure, so points processes are types of random measures known as random counting measures. In this context, the Poisson and other point processes have been studied on a locally compact second countable Hausdorff space.O. Kallenberg. ''Random measures''. Academic Pr, 1983.


Cox point process

A Cox point process, Cox process or doubly stochastic Poisson process is a generalization of the Poisson point process by letting its intensity measure \textstyle \Lambda to be also random and independent of the underlying Poisson process. The process is named after David Cox who introduced it in 1955, though other Poisson processes with random intensities had been independently introduced earlier by Lucien Le Cam and Maurice Quenouille. The intensity measure may be a realization of random variable or a random field. For example, if the
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
of the intensity measure is a Gaussian random field, then the resulting process is known as a ''log Gaussian Cox process''.J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log Gaussian Cox Processes. ''Scandinavian journal of statistics'', 25(3):451–482, 1998. More generally, the intensity measures is a realization of a non-negative locally finite random measure. Cox point processes exhibit a ''clustering'' of points, which can be shown mathematically to be larger than those of Poisson point processes. The generality and tractability of Cox processes has resulted in them being used as models in fields such as spatial statisticsJ. Møller and R. P. Waagepetersen. Modern statistics for spatial point processes. ''Scandinavian Journal of Statistics'', 34(4):643–684, 2007. and wireless networks.


Marked Poisson point process

For a given point process, each random point of a point process can have a random mathematical object, known as a mark, randomly assigned to it. These marks can be as diverse as integers, real numbers, lines, geometrical objects or other point processes. The pair consisting of a point of the point process and its corresponding mark is called a marked point, and all the marked points form a marked point process. It is often assumed that the random marks are independent of each other and identically distributed, yet the mark of a point can still depend on the location of its corresponding point in the underlying (state) space. If the underlying point process is a Poisson point process, then the resulting point process is a marked Poisson point process.


Marking theorem

If a general point process is defined on some
mathematical space In mathematics, a space is a set (sometimes known as a ''universe'') endowed with a structure defining the relationships among the elements of the set. A subspace is a subset of the parent space which retains the same structure. While modern ma ...
and the random marks are defined on another mathematical space, then the marked point process is defined on the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of these two spaces. For a marked Poisson point process with independent and identically distributed marks, the marking theorem states that this marked point process is also a (non-marked) Poisson point process defined on the aforementioned Cartesian product of the two mathematical spaces, which is not true for general point processes.


Compound Poisson point process

The compound Poisson point process or compound Poisson process is formed by adding random values or weights to each point of Poisson point process defined on some underlying space, so the process is constructed from a marked Poisson point process, where the marks form a collection of independent and identically distributed non-negative random variables. In other words, for each point of the original Poisson process, there is an independent and identically distributed non-negative random variable, and then the compound Poisson process is formed from the sum of all the random variables corresponding to points of the Poisson process located in some region of the underlying mathematical space. If there is a marked Poisson point process formed from a Poisson point process \textstyle N (defined on, for example, \textstyle \mathbb^d) and a collection of independent and identically distributed non-negative marks \textstyle \ such that for each point \textstyle x_i of the Poisson process \textstyle N there is a non-negative random variable \textstyle M_i, the resulting compound Poisson process is then: : C(B)=\sum_^ M_i , where \textstyle B\subset \mathbb^d is a Borel measurable set. If general random variables \textstyle \ take values in, for example, \textstyle d-dimensional Euclidean space \textstyle \mathbb^d, the resulting compound Poisson process is an example of a Lévy process provided that it is formed from a homogeneous Point process \textstyle N defined on the non-negative numbers \textstyle [0, \infty) .


Failure process with the exponential smoothing of intensity functions

The failure process with the exponential smoothing of intensity functions (FP-ESI) is an extension of the nonhomogeneous Poisson process. The intensity function of an FP-ESI is an exponential smoothing function of the intensity functions at the last time points of event occurrences and outperforms other nine stochastic processes on 8 real-world failure datasets when the models are used to fit the datasets,Wu, S. (2019)
A failure process model with the exponential smoothing of intensity functions
''European Journal of Operational Research'', 275(2), 502–513
where the model performance is measured in terms of AIC (Akaike information criterion) and BIC (Bayesian information criterion).


See also

*Boolean model (probability theory) *Continuum percolation theory *Compound Poisson process *Cox process * Point process * Stochastic geometry * Stochastic geometry models of wireless networks * Markovian arrival processes


Notes


References


Specific


General


Books

* * * * * * * * * * *


Articles

* * {{Stochastic processes Point processes Markov processes Spatial processes Lévy processes