In mathematics, the Ornstein–Uhlenbeck process is a
stochastic process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Sto ...
with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive
Brownian particle under the influence of
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
. It is named after
Leonard Ornstein and
George Eugene Uhlenbeck.
The Ornstein–Uhlenbeck process is a
stationary Gauss–Markov process, which means that it is a
Gaussian process
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution. The di ...
, a
Markov process
In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, ...
, and is temporally homogeneous. In fact, it is the only nontrivial process that satisfies these three conditions, up to allowing linear transformations of the space and time variables. Over time, the process tends to drift towards its mean function: such a process is called ''mean-reverting''.
The process can be considered to be a modification of the
random walk
In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some Space (mathematics), mathematical space.
An elementary example of a rand ...
in
continuous time, or
Wiener process
In mathematics, the Wiener process (or Brownian motion, due to its historical connection with Brownian motion, the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener. It is one o ...
, in which the properties of the process have been changed so that there is a tendency of the walk to move back towards a central location, with a greater attraction when the process is further away from the center. The Ornstein–Uhlenbeck process can also be considered as the continuous-time analogue of the discrete-time
AR(1) process.
Definition
The Ornstein–Uhlenbeck process
is defined by the following
stochastic differential equation:
:
where
and
are parameters and
denotes the
Wiener process
In mathematics, the Wiener process (or Brownian motion, due to its historical connection with Brownian motion, the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener. It is one o ...
.
An additional term is sometimes added:
:
where
is a constant called the (long-term) mean.
The Ornstein–Uhlenbeck process is sometimes also written as a
Langevin equation
In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Lange ...
of the form
:
where
, also known as
white noise
In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used with this or similar meanings in many scientific and technical disciplines, i ...
, stands in for the supposed derivative
of the Wiener process. However,
does not exist because the Wiener process is nowhere differentiable, and so the Langevin equation only makes sense if interpreted in distributional sense. In physics and engineering disciplines, it is a common representation for the Ornstein–Uhlenbeck process and similar stochastic differential equations by tacitly assuming that the noise term is a derivative of a differentiable (e.g. Fourier) interpolation of the Wiener process.
Fokker–Planck equation representation
The Ornstein–Uhlenbeck process can also be described in terms of a probability density function,
, which specifies the probability of finding the process in the state
at time
. This function satisfies the
Fokker–Planck equation
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag (physi ...
:
where
. This is a linear
parabolic partial differential equation which can be solved by a variety of techniques. The transition probability, also known as the
Green's function
In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.
This means that if L is a linear dif ...
,
is a Gaussian with mean
and variance
:
: