Noble Gas
   HOME

TheInfoList



OR:

The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
18 of the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
:
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
(He),
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
(Ne),
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
(Ar),
krypton Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
(Kr),
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
(Xe),
radon Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only Rn has a sufficiently long half-life (3.825 days) for it to b ...
(Rn) and, in some cases,
oganesson Oganesson is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint ...
(Og). Under
standard conditions Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used ...
, the first six of these elements are odorless, colorless,
monatomic In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
gases with very low
chemical reactivity In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy. ''Reactivity'' refers to: * the chemical reactions of a single sub ...
and
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
boiling points. The properties of oganesson are uncertain. The
intermolecular force An intermolecular force (IMF; also secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles (e.g. ...
between noble gas atoms is the very weak
London dispersion force London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds or loosely as van der Waals forces) are a type of intermolecular force acting between at ...
, so their boiling points are all cryogenic, below . The noble gases' inertness, or tendency not to react with other
chemical substance A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be com ...
s, results from their
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
: their outer shell of
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s is "full", giving them little tendency to participate in
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s. Only a few hundred
noble gas compound In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 8 or 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, parti ...
s are known to exist. The inertness of noble gases makes them useful whenever chemical reactions are unwanted. For example, argon is used as a
shielding gas Shielding gases are inert or semi-inert gases that are commonly used in several welding processes, most notably gas metal arc welding and gas tungsten arc welding (GMAW and GTAW, more popularly known as MIG (Metal Inert Gas) and TIG (Tungsten I ...
in
welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
and as a filler gas in
incandescent light bulb An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a #Filament, filament until it incandescence, glows. The filament is enclosed in a ...
s. Helium is used to provide buoyancy in
blimp A non-rigid airship, commonly called a blimp (Help:IPA/English, /blɪmp/), is an airship (dirigible) without an internal structural framework or a keel. Unlike semi-rigid airship, semi-rigid and rigid airships (e.g. Zeppelins), blimps rely on th ...
s and balloons. Helium and neon are also used as
refrigerant A refrigerant is a working fluid used in the cooling, heating, or reverse cooling/heating cycles of air conditioning systems and heat pumps, where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are ...
s due to their low
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
s. Industrial quantities of the noble gases, except for radon, are obtained by separating them from
air An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
using the methods of
liquefaction of gases Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using ...
and
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
. Helium is also a byproduct of the mining of
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
. Radon is usually isolated from the
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
of dissolved
radium Radium is a chemical element; it has chemical symbol, symbol Ra and atomic number 88. It is the sixth element in alkaline earth metal, group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, ...
,
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
, or
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
compounds. The seventh member of group 18 is oganesson, an
unstable In dynamical systems instability means that some of the outputs or internal state (controls), states increase with time, without bounds. Not all systems that are not Stability theory, stable are unstable; systems can also be marginal stability ...
synthetic element A synthetic element is a known chemical element that does not occur naturally on Earth: it has been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; thus, it i ...
whose chemistry is still uncertain because only five very short-lived atoms (t1/2 = 0.69 ms) have ever been synthesized ().
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
uses the term "noble gas" interchangeably with "group 18" and thus includes oganesson; however, due to relativistic effects, oganesson is predicted to be a
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
under standard conditions and reactive enough not to qualify functionally as "noble".


History

''Noble gas'' is translated from the
German German(s) may refer to: * Germany, the country of the Germans and German things **Germania (Roman era) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizenship in Germany, see also Ge ...
noun , first used in 1900 by Hugo Erdmann to indicate their extremely low level of reactivity. The name makes an analogy to the term "
noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
s", which also have low reactivity. The noble gases have also been referred to as ''
inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
es'', but this label is deprecated as many
noble gas compound In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 8 or 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, parti ...
s are now known. ''Rare gases'' is another term that was used, but this is also inaccurate because
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the
Earth's atmosphere The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weathe ...
due to decay of radioactive
potassium-40 Potassium-40 (K) is a long lived and the main naturally occurring radioactive isotope of potassium. Its half-life is 1.25 billion years. It makes up about 0.012% (120 parts-per notation, ppm) of natural potassium. Potassium-40 undergoes four dif ...
.
Pierre Janssen Pierre Jules César Janssen (22 February 1824 – 23 December 1907), usually known as Jules Janssen, was a French astronomer who, along with English scientist Joseph Norman Lockyer, is credited with discovering the gaseous nature of the solar ...
and Joseph Norman Lockyer had discovered a new element on 18 August 1868 while looking at the
chromosphere A chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (''khrôma'') 'color' and σφαῖρα (''sphaîra'') 'sphere') is the second layer of a Stellar atmosphere, star's atmosphere, located above the photosphere and below t ...
of the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
, and named it
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
after the Greek word for the Sun, (). No chemical analysis was possible at the time, but helium was later found to be a noble gas. Before them, in 1784, the English chemist and physicist
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "inflammable air". He described the density of inflammable a ...
had discovered that air contains a small proportion of a substance less reactive than
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
. A century later, in 1895,
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh ( ; 12 November 1842 – 30 June 1919), was an English physicist who received the Nobel Prize in Physics in 1904 "for his investigations of the densities of the most important gases and for his discovery ...
discovered that samples of nitrogen from the air were of a different
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
than nitrogen resulting from
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s. Along with Scottish scientist
William Ramsay Sir William Ramsay (; 2 October 1852 – 23 July 1916) was a Scottish chemist who discovered the noble gases and received the Nobel Prize in Chemistry in 1904 "in recognition of his services in the discovery of the inert gaseous elements ...
at
University College, London University College London (Trade name, branded as UCL) is a Public university, public research university in London, England. It is a Member institutions of the University of London, member institution of the Federal university, federal Uni ...
, Lord Rayleigh theorized that the nitrogen extracted from air was mixed with another gas, leading to an experiment that successfully isolated a new element, argon, from the Greek word (, "idle" or "lazy"). With this discovery, they realized an entire class of
gas Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
es was missing from the periodic table. During his search for argon, Ramsay also managed to isolate helium for the first time while heating
cleveite Cleveite is an impure radioactive variety of uraninite containing uranium, found in Norway. It has the composition UO2 with about 10% of the uranium substituted by rare-earth elements. It was named after Swedish chemist Per Teodor Cleve. Cleve ...
, a mineral. In 1902, having accepted the evidence for the elements helium and argon,
Dmitri Mendeleev Dmitri Ivanovich Mendeleev ( ; ) was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known ele ...
included these noble gases as group 0 in his arrangement of the elements, which would later become the periodic table. Ramsay continued his search for these gases using the method of
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
to separate
liquid air Liquid Air was the marque of an automobile planned by Liquid Air Power and Automobile Co. of Boston and New York City in 1899. page 1432 A factory location was acquired in Boston, Massachusetts in 1899 and Liquid Air claimed they would constr ...
into several components. In 1898, he discovered the elements
krypton Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
,
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
, and
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
, and named them after the Greek words (, "hidden"), (, "new"), and (, "stranger"), respectively.
Radon Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only Rn has a sufficiently long half-life (3.825 days) for it to b ...
was first identified in 1898 by
Friedrich Ernst Dorn Friedrich Ernst Dorn (27 July 1848 – 16 December 1916) was a German physicist. He is best remembered for his discovery that radium emits a radioactive substance, later named radon. Life and work Dorn was born in Guttstadt (Dobre Miasto), ...
, and was named ''radium emanation'', but was not considered a noble gas until 1904 when its characteristics were found to be similar to those of other noble gases. Rayleigh and Ramsay received the 1904
Nobel Prize The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
s in Physics and in Chemistry, respectively, for their discovery of the noble gases; in the words of J. E. Cederblom, then president of the
Royal Swedish Academy of Sciences The Royal Swedish Academy of Sciences () is one of the Swedish Royal Academies, royal academies of Sweden. Founded on 2 June 1739, it is an independent, non-governmental scientific organization that takes special responsibility for promoting nat ...
, "the discovery of an entirely new group of elements, of which no single representative had been known with any certainty, is something utterly unique in the history of chemistry, being intrinsically an advance in science of peculiar significance". The discovery of the noble gases aided in the development of a general understanding of
atomic structure Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other b ...
. In 1895, French chemist
Henri Moissan Ferdinand Frédéric Henri Moissan (; 28 September 1852 – 20 February 1907) was a French chemist and pharmacist who won the 1906 Nobel Prize in Chemistry for his work in isolating fluorine from its compounds. Among his other contributions, Mo ...
attempted to form a reaction between
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
, the most
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
element, and argon, one of the noble gases, but failed. Scientists were unable to prepare compounds of argon until the end of the 20th century, but these attempts helped to develop new theories of atomic structure. Learning from these experiments, Danish physicist
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
proposed in 1913 that the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s in atoms are arranged in shells surrounding the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
, and that for all noble gases except helium the outermost shell always contains eight electrons. In 1916,
Gilbert N. Lewis Gilbert Newton Lewis (October 23 or October 25, 1875 – March 23, 1946) was an American physical chemist and a dean of the college of chemistry at University of California, Berkeley. Lewis was best known for his discovery of the covalent bon ...
formulated the ''
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ru ...
'', which concluded an octet of electrons in the outer shell was the most stable arrangement for any atom; this arrangement caused them to be unreactive with other elements since they did not require any more electrons to complete their outer shell. In 1962, Neil Bartlett discovered the first chemical compound of a noble gas,
xenon hexafluoroplatinate Xenon hexafluoroplatinate is the product of the reaction of platinum hexafluoride with xenon, in an experiment that proved the chemical reactivity of the noble gases. This experiment was performed by Neil Bartlett at the University of British Co ...
. Compounds of other noble gases were discovered soon after: in 1962 for radon, radon difluoride (), which was identified by radiotracer techniques and in 1963 for krypton,
krypton difluoride Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances ...
(). The first stable compound of argon was reported in 2000 when argon fluorohydride (HArF) was formed at a temperature of . In October 2006, scientists from the Joint Institute for Nuclear Research and
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
successfully created synthetically
oganesson Oganesson is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint ...
, the seventh element in group 18, by bombarding
californium Californium is a synthetic chemical element; it has symbol Cf and atomic number 98. It was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory) by bombarding curium with al ...
with calcium.


Physical and atomic properties

The noble gases have weak interatomic force, and consequently have very low
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
s. They are all
monatomic In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
gas Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
es under
standard conditions Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used ...
, including the elements with larger
atomic mass Atomic mass ( or ) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ...
es than many normally
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
elements.
Helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
has several unique qualities when compared with other elements: its boiling point at 1 atm is lower than those of any other known
substance Substance may refer to: * Matter, anything that has mass and takes up space Chemistry * Chemical substance, a material with a definite chemical composition * Drug, a chemical agent affecting an organism Arts, entertainment, and media Music * ' ...
; it is the only element known to exhibit
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
; and, it is the only element that cannot be solidified by cooling at
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
(an effect explained by
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
as its
zero point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pr ...
is too high to permit
freezing Freezing is a phase transition in which a liquid turns into a solid when its temperature is lowered below its freezing point. For most substances, the melting and freezing points are the same temperature; however, certain substances possess dif ...
) – a
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
of must be applied at a
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
of to convert it to a solid while a pressure of about is required at
room temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
. The noble gases up to xenon have multiple stable
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s; krypton and xenon also have naturally occurring
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s, namely 78Kr, 124Xe, and 136Xe, all have very long lives (> 1021 years) and can undergo
double electron capture Double electron capture is a decay mode of an atomic nucleus. For a nuclide (''A'', ''Z'') with a number of nucleons ''A'' and atomic number ''Z'', double electron capture is only possible if the mass of the nuclide (''A'', ''Z''−2) is lower. I ...
or
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move cl ...
. Radon has no
stable isotope Stable nuclides are Isotope, isotopes of a chemical element whose Nucleon, nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The Atomic nucleus, nuclei of such isotopes are no ...
s; its longest-lived isotope, 222Rn, has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 3.8 days and decays to form helium and
polonium Polonium is a chemical element; it has symbol Po and atomic number 84. A rare and highly radioactive metal (although sometimes classified as a metalloid) with no stable isotopes, polonium is a chalcogen and chemically similar to selenium and tel ...
, which ultimately decays to
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
. Oganesson also has no stable isotopes, and its only known isotope 294Og is very short-lived (half-life 0.7 ms). Melting and boiling points increase going down the group. The noble gas
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, like atoms in most groups, increase steadily in
atomic radius The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there ...
from one period to the next due to the increasing number of
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s. The size of the atom is related to several properties. For example, the
ionization potential In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as :X(g) ...
decreases with an increasing radius because the
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s in the larger noble gases are farther away from the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
and are therefore not held as tightly together by the atom. Noble gases have the largest ionization potential among the elements of each period, which reflects the stability of their electron configuration and is related to their relative lack of
chemical reactivity In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy. ''Reactivity'' refers to: * the chemical reactions of a single sub ...
. Some of the heavier noble gases, however, have ionization potentials small enough to be comparable to those of other elements and
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s. It was the insight that xenon has an ionization potential similar to that of the
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
molecule that led Bartlett to attempt oxidizing xenon using
platinum hexafluoride Platinum hexafluoride is the chemical compound with the formula Pt F6, and is one of seventeen known binary hexafluorides. It is a dark-red volatile solid that forms a red gas. The compound is a unique example of platinum in the +6 oxidation sta ...
, an
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In ot ...
known to be strong enough to react with oxygen. Noble gases cannot accept an electron to form stable
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s; that is, they have a negative
electron affinity The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. ::X(g) + e− → X−(g) + energy This differs by si ...
. The
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenome ...
physical properties A physical property is any property of a physical system that is measurable. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called ''physical ...
of the noble gases are dominated by the weak
van der Waals forces In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical ele ...
between the atoms. The attractive
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
increases with the size of the atom as a result of the increase in
polarizability Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of particles with an electric charge. When subject to an elect ...
and the decrease in ionization potential. This results in systematic group trends: as one goes down group 18, the atomic radius increases, and with it the interatomic forces increase, resulting in an increasing melting point, boiling point,
enthalpy of vaporization In thermodynamics, the enthalpy of vaporization (symbol ), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that sub ...
, and
solubility In chemistry, solubility is the ability of a chemical substance, substance, the solute, to form a solution (chemistry), solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form su ...
. The increase in
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
is due to the increase in
atomic mass Atomic mass ( or ) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ...
. The noble gases are nearly
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
es under standard conditions, but their deviations from the
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
provided important clues for the study of intermolecular interactions. The
Lennard-Jones potential In computational chemistry, molecular physics, and physical chemistry, the Lennard-Jones potential (also termed the LJ potential or 12-6 potential; named for John Lennard-Jones) is an intermolecular pair potential. Out of all the intermolecul ...
, often used to model intermolecular interactions, was deduced in 1924 by
John Lennard-Jones Sir John Edward Lennard-Jones (27 October 1894 – 1 November 1954) was a British mathematician and professor of theoretical physics at the University of Bristol, and then of theoretical science at the University of Cambridge. He was an im ...
from
experimental data Experimental data in science and engineering is data produced by a measurement, test method, experimental design or quasi-experimental design. In clinical research any data produced are the result of a clinical trial. Experimental data may be qu ...
on argon before the development of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
provided the tools for understanding intermolecular forces from
first principles In philosophy and science, a first principle is a basic proposition or assumption that cannot be deduced from any other proposition or assumption. First principles in philosophy are from first cause attitudes and taught by Aristotelians, and nuan ...
. The theoretical analysis of these interactions became tractable because the noble gases are monatomic and the atoms spherical, which means that the interaction between the atoms is independent of direction, or
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
.


Chemical properties

The noble gases are colorless, odorless, tasteless, and nonflammable under
standard conditions Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used ...
. They were once labeled ''
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
 0'' in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
because it was believed they had a valence of zero, meaning their
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s cannot combine with those of other elements to form compounds. However, it was later discovered some do indeed form compounds, causing this label to fall into disuse.


Electron configuration

Like other groups, the members of this
family Family (from ) is a Social group, group of people related either by consanguinity (by recognized birth) or Affinity (law), affinity (by marriage or other relationship). It forms the basis for social order. Ideally, families offer predictabili ...
show patterns in its
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
, especially the outermost shells resulting in trends in chemical behavior: The noble gases have full valence electron shells.
Valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s are the outermost
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s of an atom and are normally the only electrons that participate in
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
ing. Atoms with full valence electron shells are extremely
stable A stable is a building in which working animals are kept, especially horses or oxen. The building is usually divided into stalls, and may include storage for equipment and feed. Styles There are many different types of stables in use tod ...
and therefore do not tend to form
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
s and have little tendency to gain or lose electrons. However, heavier noble gases such as radon are held less firmly together by
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interac ...
than lighter noble gases such as helium, making it easier to remove outer electrons from heavy noble gases. As a result of a full shell, the noble gases can be used in conjunction with the
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
notation to form the ''noble gas notation''. To do this, the nearest noble gas that precedes the element in question is written first, and then the electron configuration is continued from that point forward. For example, the electron notation of
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
is , while the noble gas notation is . This more compact notation makes it easier to identify elements, and is shorter than writing out the full notation of
atomic orbital In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
s. The noble gases cross the boundary between blocks—helium is an s-element whereas the rest of members are p-elements—which is unusual among the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
groups. All other IUPAC groups contain elements from ''one'' block each. This causes some inconsistencies in trends across the table, and on those grounds some
chemist A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a graduated scientist trained in the study of chemistry, or an officially enrolled student in the field. Chemists study the composition of ...
s have proposed that helium should be moved to
group 2 The term Group 2 may refer to: * Alkaline earth metal The alkaline earth metals are six chemical elements in group (periodic table), group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (B ...
to be with other s2 elements, but this change has not generally been adopted.


Compounds

The noble gases show extremely low
chemical reactivity In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy. ''Reactivity'' refers to: * the chemical reactions of a single sub ...
; consequently, only a few hundred
noble gas compound In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 8 or 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, parti ...
s have been formed. Neutral compounds in which helium and neon are involved in
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
s have not been formed (although some helium-containing
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s exist and there is some theoretical evidence for a few neutral helium-containing ones), while xenon, krypton, and argon have shown only minor reactivity. The reactivity follows the order Ne < He < Ar < Kr < Xe < Rn ≪ Og. In 1933,
Linus Pauling Linus Carl Pauling ( ; February 28, 1901August 19, 1994) was an American chemist and peace activist. He published more than 1,200 papers and books, of which about 850 dealt with scientific topics. ''New Scientist'' called him one of the 20 gre ...
predicted that the heavier noble gases could form compounds with fluorine and oxygen. He predicted the existence of krypton hexafluoride () and
xenon hexafluoride Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All of them are exergonic and stable at normal temperatur ...
() and speculated that xenon octafluoride () might exist as an unstable compound, and suggested that xenic acid could form perxenate salts. These predictions were shown to be generally accurate, except that is now thought to be both thermodynamically and kinetically unstable. Xenon compounds are the most numerous of the noble gas compounds that have been formed. Most of them have the xenon atom in the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
of +2, +4, +6, or +8 bonded to highly
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
atoms such as fluorine or oxygen, as in
xenon difluoride Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as th ...
(), xenon tetrafluoride (),
xenon hexafluoride Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All of them are exergonic and stable at normal temperatur ...
(), xenon tetroxide (), and sodium perxenate (). Xenon reacts with fluorine to form numerous xenon fluorides according to the following equations: ::Xe + F2 → XeF2 ::Xe + 2F2 → XeF4 ::Xe + 3F2 → XeF6 Some of these compounds have found use in
chemical synthesis Chemical synthesis (chemical combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In modern laboratory uses ...
as
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In ot ...
s; , in particular, is commercially available and can be used as a fluorinating agent. As of 2007, about five hundred compounds of xenon bonded to other elements have been identified, including organoxenon compounds (containing xenon bonded to carbon), and xenon bonded to nitrogen, chlorine, gold, mercury, and xenon itself. Compounds of xenon bound to boron, hydrogen, bromine, iodine, beryllium, sulphur, titanium, copper, and silver have also been observed but only at low temperatures in noble gas
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
, or in supersonic noble gas jets. Radon is more reactive than xenon, and forms chemical bonds more easily than xenon does. However, due to the high radioactivity and short half-life of radon isotopes, only a few
fluoride Fluoride (). According to this source, is a possible pronunciation in British English. is an Inorganic chemistry, inorganic, Monatomic ion, monatomic Ion#Anions and cations, anion of fluorine, with the chemical formula (also written ), whose ...
s and
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s of radon have been formed in practice. Radon goes further towards metallic behavior than xenon; the difluoride RnF2 is highly ionic, and cationic Rn2+ is formed in halogen fluoride solutions. For this reason, kinetic hindrance makes it difficult to oxidize radon beyond the +2 state. Only tracer experiments appear to have succeeded in doing so, probably forming RnF4, RnF6, and RnO3. Krypton is less reactive than xenon, but several compounds have been reported with krypton in the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
of +2.
Krypton difluoride Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances ...
is the most notable and easily characterized. Under extreme conditions, krypton reacts with fluorine to form KrF2 according to the following equation: ::Kr + F2 → KrF2 Compounds in which krypton forms a single bond to nitrogen and oxygen have also been characterized, but are only stable below and respectively. Krypton atoms chemically bound to other nonmetals (hydrogen, chlorine, carbon) as well as some late
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
s (copper, silver, gold) have also been observed, but only either at low temperatures in noble gas matrices, or in supersonic noble gas jets. Similar conditions were used to obtain the first few compounds of argon in 2000, such as argon fluorohydride (HArF), and some bound to the late transition metals copper, silver, and gold. As of 2007, no stable neutral molecules involving covalently bound helium or neon are known. Extrapolation from periodic trends predict that oganesson should be the most reactive of the noble gases; more sophisticated theoretical treatments indicate greater reactivity than such extrapolations suggest, to the point where the applicability of the descriptor "noble gas" has been questioned. Oganesson is expected to be rather like
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
or
tin Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
in group 14: a reactive element with a common +4 and a less common +2 state, which at room temperature and pressure is not a gas but rather a solid semiconductor. Empirical / experimental testing will be required to validate these predictions. (On the other hand,
flerovium Flerovium is a synthetic chemical element; it has symbol Fl and atomic number 114. It is an extremely radioactive, superheavy element, named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Du ...
, despite being in group 14, is predicted to be unusually volatile, which suggests noble gas-like properties.) The noble gases—including helium—can form stable
molecular ion A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry, ...
s in the gas phase. The simplest is the helium hydride molecular ion, HeH+, discovered in 1925. Because it is composed of the two most abundant elements in the universe, hydrogen and helium, it was believed to occur naturally in the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
, and it was finally detected in April 2019 using the airborne SOFIA telescope. In addition to these ions, there are many known neutral
excimer An excimer (originally short for excited dimer) is a short-lived polyatomic molecule formed from two species that do not form a stable molecule in the ground state. In this case, formation of molecules is possible only if such atom is in an elec ...
s of the noble gases. These are compounds such as ArF and KrF that are stable only when in an excited electronic state; some of them find application in
excimer laser An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and micro ...
s. In addition to the compounds where a noble gas atom is involved in a
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
, noble gases also form
non-covalent In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The ...
compounds. The
clathrate A clathrate is a chemical substance consisting of a lattice (group), lattice that traps or contains molecules. The word ''clathrate'' is derived from the Latin language, Latin (), meaning 'with bars, Crystal structure, latticed'. Most clathrate ...
s, first described in 1949, consist of a noble gas atom trapped within cavities of
crystal lattice In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystal, crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that ...
s of certain organic and inorganic substances. The essential condition for their formation is that the guest (noble gas) atoms must be of appropriate size to fit in the cavities of the host crystal lattice. For instance, argon, krypton, and xenon form clathrates with
hydroquinone Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a ''para' ...
, but helium and neon do not because they are too small or insufficiently polarizable to be retained. Neon, argon, krypton, and xenon also form clathrate hydrates, where the noble gas is trapped in ice. Noble gases can form endohedral fullerene compounds, in which the noble gas atom is trapped inside a
fullerene A fullerene is an allotropes of carbon, allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may ...
molecule. In 1993, it was discovered that when , a spherical molecule consisting of 60 
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
 atoms, is exposed to noble gases at high pressure,
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
es such as can be formed (the ''@'' notation indicates He is contained inside but not covalently bound to it). As of 2008, endohedral complexes with helium, neon, argon, krypton, and xenon have been created. These compounds have found use in the study of the structure and reactivity of fullerenes by means of the
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
of the noble gas atom. Noble gas compounds such as
xenon difluoride Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as th ...
() are considered to be hypervalent because they violate the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ru ...
. Bonding in such compounds can be explained using a
three-center four-electron bond The 3-center 4-electron (3c–4e) bond is a model used to explain bonding in certain hypervalent molecules such as tetratomic and hexatomic interhalogen compounds, sulfur tetrafluoride, the xenon fluorides, and the bifluoride ion. It is also k ...
model. This model, first proposed in 1951, considers bonding of three collinear atoms. For example, bonding in is described by a set of three
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding ...
s (MOs) derived from
p-orbital In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calc ...
s on each atom. Bonding results from the combination of a filled p-orbital from Xe with one half-filled p-orbital from each F atom, resulting in a filled bonding orbital, a filled non-bonding orbital, and an empty
antibonding In theoretical chemistry, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more node ...
orbital. The highest occupied molecular orbital is localized on the two terminal atoms. This represents a localization of charge that is facilitated by the high electronegativity of fluorine. The chemistry of the heavier noble gases, krypton and xenon, are well established. The chemistry of the lighter ones, argon and helium, is still at an early stage, while a neon compound is yet to be identified.


Occurrence

The abundances of the noble gases in the universe decrease as their
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
s increase. Helium is the most common element in the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
after hydrogen, with a mass fraction of about 24%. Most of the helium in the universe was formed during
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (also known as primordial nucleosynthesis, and abbreviated as BBN) is a model for the production of light nuclei, deuterium, 3He, 4He, 7Li, between 0.01s and 200s in the lifetime of the universe ...
, but the amount of helium is steadily increasing due to the fusion of hydrogen in
stellar nucleosynthesis In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
(and, to a very slight degree, the
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
of heavy elements). Abundances on Earth follow different trends; for example, helium is only the third most abundant noble gas in the atmosphere. The reason is that there is no primordial helium in the atmosphere; due to the small mass of the atom, helium cannot be retained by the Earth's
gravitational field In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
. Helium on Earth comes from the
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
of heavy elements such as
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
and
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
found in the Earth's crust, and tends to accumulate in natural gas deposits. The abundance of argon, on the other hand, is increased as a result of the
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
of
potassium-40 Potassium-40 (K) is a long lived and the main naturally occurring radioactive isotope of potassium. Its half-life is 1.25 billion years. It makes up about 0.012% (120 parts-per notation, ppm) of natural potassium. Potassium-40 undergoes four dif ...
, also found in the Earth's crust, to form
argon-40 Argon (Ar) has 26 known isotopes, from Ar to Ar, of which three are stable (Ar, Ar, and Ar). On Earth, Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are Ar with a half-life of 268 years, Ar with a half-life of 32.9 ye ...
, which is the most abundant isotope of argon on Earth despite being relatively rare in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
. This process is the basis for the potassium-argon dating method. Xenon has an unexpectedly low abundance in the atmosphere, in what has been called the ''missing xenon problem''; one theory is that the missing xenon may be trapped in minerals inside the Earth's crust. Radon is formed in the
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time ...
by the
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
of radium. It can seep into buildings through cracks in their foundation and accumulate in areas that are not well ventilated. Due to its high radioactivity, radon presents a significant health hazard; it is implicated in an estimated 21,000
lung cancer Lung cancer, also known as lung carcinoma, is a malignant tumor that begins in the lung. Lung cancer is caused by genetic damage to the DNA of cells in the airways, often caused by cigarette smoking or inhaling damaging chemicals. Damaged ...
deaths per year in the United States alone. Oganesson does not occur in nature and is instead created manually by scientists.
For large-scale use, helium is extracted by
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
from natural gas, which can contain up to 7% helium.


Extraction

Neon, argon, krypton, and xenon are obtained from air using the methods of
liquefaction of gases Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using ...
, to convert elements to a liquid state, and
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
, to separate mixtures into component parts. Helium is typically produced by separating it from
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
, and radon is isolated from the radioactive decay of radium compounds. The prices of the noble gases are influenced by their natural abundance, with argon being the cheapest and xenon the most expensive. As an example, the adjacent table lists the 2004 prices in the United States for laboratory quantities of each gas.


Biological chemistry

None of the elements in this group has any biological importance.


Applications

Noble gases have very low boiling and melting points, which makes them useful as
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
refrigerant A refrigerant is a working fluid used in the cooling, heating, or reverse cooling/heating cycles of air conditioning systems and heat pumps, where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are ...
s. In particular,
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
, which boils at , is used for
superconducting magnet A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much ...
s, such as those needed in nuclear magnetic resonance imaging and
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
. Liquid neon, although it does not reach temperatures as low as liquid helium, also finds use in cryogenics because it has over 40 times more refrigerating capacity than liquid helium and over three times more than liquid hydrogen. Helium is used as a component of
breathing gases A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed h ...
to replace nitrogen, due its low
solubility In chemistry, solubility is the ability of a chemical substance, substance, the solute, to form a solution (chemistry), solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form su ...
in fluids, especially in
lipids Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins Vitamin A, A, Vitamin D, D, Vitamin E, E and Vitamin K, K), monoglycerides, diglycerides, phospholipids, and others. The fu ...
. Gases are absorbed by the
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood is com ...
and
body tissue In biology, tissue is an assembly of similar cells and their extracellular matrix from the same embryonic origin that together carry out a specific function. Tissues occupy a biological organizational level between cells and a complete org ...
s when under pressure like in
scuba diving Scuba diving is a Diving mode, mode of underwater diving whereby divers use Scuba set, breathing equipment that is completely independent of a surface breathing gas supply, and therefore has a limited but variable endurance. The word ''scub ...
, which causes an
anesthetic An anesthetic (American English) or anaesthetic (British English; see spelling differences) is a drug used to induce anesthesia ⁠— ⁠in other words, to result in a temporary loss of sensation or awareness. They may be divided into t ...
effect known as nitrogen narcosis. Due to its reduced solubility, little helium is taken into
cell membranes The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extra ...
, and when helium is used to replace part of the breathing mixtures, such as in trimix or
heliox Heliox is a breathing gas mixture of helium (He) and oxygen (O2). It is used as a medical treatment for patients with difficulty breathing because this mixture generates less resistance than atmospheric air when passing through the airways of ...
, a decrease in the narcotic effect of the gas at depth is obtained. Helium's reduced solubility offers further advantages for the condition known as
decompression sickness Decompression sickness (DCS; also called divers' disease, the bends, aerobullosis, and caisson disease) is a medical condition caused by dissolved gases emerging from Solution (chemistry), solution as bubbles inside the body tissues during D ...
, or ''the bends''. The reduced amount of dissolved gas in the body means that fewer gas bubbles form during the decrease in pressure of the ascent. Another noble gas, argon, is considered the best option for use as a
drysuit A dry suit or drysuit provides the wearer with environmental protection by way of thermal insulation and exclusion of water, and is worn by divers, boaters, water sports enthusiasts, and others who work or play in or near cold or contaminated ...
inflation gas for scuba diving. Helium is also used as filling gas in nuclear fuel rods for nuclear reactors. Since the ''Hindenburg'' disaster in 1937, helium has replaced hydrogen as a
lifting gas A lifting gas or lighter-than-air gas is a gas that has a density lower than normal atmospheric gases and rises above them as a result, making it useful in lifting lighter-than-air aircraft. Only certain lighter-than-air gases are suitable as lift ...
in
blimp A non-rigid airship, commonly called a blimp (Help:IPA/English, /blɪmp/), is an airship (dirigible) without an internal structural framework or a keel. Unlike semi-rigid airship, semi-rigid and rigid airships (e.g. Zeppelins), blimps rely on th ...
s and
balloon A balloon is a flexible membrane bag that can be inflated with a gas, such as helium, hydrogen, nitrous oxide, oxygen, or air. For special purposes, balloons can be filled with smoke, liquid water, granular media (e.g. sand, flour or rice), ...
s: despite an 8.6% decrease in buoyancy compared to hydrogen, helium is not combustible. In many applications, the noble gases are used to provide an inert atmosphere. Argon is used in the synthesis of air-sensitive compounds that are sensitive to nitrogen. Solid argon is also used for the study of very unstable compounds, such as
reactive intermediate In chemistry, a reactive intermediate or an intermediate is a short-lived, high-energy, highly reactive molecule. When generated in a chemical reaction, it will quickly convert into a more stable molecule. Only in exceptional cases can these comp ...
s, by trapping them in an inert
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
at very low temperatures. Helium is used as the carrier medium in
gas chromatography Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for Separation process, separating and analyzing compounds that can be vaporized without Chemical decomposition, decomposition. Typical uses of GC include t ...
, as a filler gas for
thermometers A thermometer is a device that temperature measurement, measures temperature (the hotness or coldness of an object) or temperature gradient (the rates of change of temperature in space). A thermometer has two important elements: (1) a temperatur ...
, and in devices for measuring radiation, such as the
Geiger counter A Geiger counter (, ; also known as a Geiger–Müller counter or G-M counter) is an electronic instrument for detecting and measuring ionizing radiation with the use of a Geiger–Müller tube. It is widely used in applications such as radiat ...
and the
bubble chamber A bubble chamber is a vessel filled with a superheated transparent liquid (most often liquid hydrogen) used to detect electrically charged particles moving through it. It was invented in 1952 by Donald A. Glaser, for which he was awarded th ...
. Helium and argon are both commonly used to shield welding arcs and the surrounding
base metal A base metal is a common and inexpensive metal, as opposed to a precious metal such as gold or silver. In numismatics, coins often derived their value from the precious metal content; however, base metals have also been used in coins in the past ...
from the atmosphere during welding and cutting, as well as in other metallurgical processes and in the production of silicon for the semiconductor industry. Noble gases are commonly used in
lighting Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. ...
because of their lack of chemical reactivity. Argon, mixed with nitrogen, is used as a filler gas for
incandescent light bulb An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a #Filament, filament until it incandescence, glows. The filament is enclosed in a ...
s. Krypton is used in high-performance light bulbs, which have higher
color temperature Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most clos ...
s and greater efficiency, because it reduces the rate of evaporation of the filament more than argon; halogen lamps, in particular, use krypton mixed with small amounts of compounds of
iodine Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at , and boils to a vi ...
or
bromine Bromine is a chemical element; it has chemical symbol, symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between th ...
. The noble gases glow in distinctive colors when used inside
gas-discharge lamp Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionization, ionized gas, a plasma (physics), plasma. Typically, such lamps use a noble gas (argon, neon, krypton, and x ...
s, such as " neon lights". These lights are called after neon but often contain other gases and
phosphor A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or ...
s, which add various hues to the orange-red color of neon. Xenon is commonly used in
xenon arc lamp A xenon arc lamp is a highly specialized type of gas discharge lamp, an electric light that produces light by passing electricity through ionized xenon gas at high pressure. It produces a bright white light to simulate sunlight, with applications ...
s, which, due to their nearly
continuous spectrum In the physical sciences, the term ''spectrum'' was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersion (optics), dispersed through a prism (optics), prism. ...
that resembles daylight, find application in film projectors and as automobile headlamps. The noble gases are used in
excimer laser An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and micro ...
s, which are based on short-lived electronically excited molecules known as
excimer An excimer (originally short for excited dimer) is a short-lived polyatomic molecule formed from two species that do not form a stable molecule in the ground state. In this case, formation of molecules is possible only if such atom is in an elec ...
s. The excimers used for lasers may be noble gas dimers such as Ar2, Kr2 or Xe2, or more commonly, the noble gas is combined with a halogen in excimers such as ArF, KrF, XeF, or XeCl. These lasers produce
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light, which, due to its short
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
(193 nm for ArF and 248 nm for KrF), allows for high-precision imaging. Excimer lasers have many industrial, medical, and scientific applications. They are used for
microlithography Microlithography is a general name for any manufacturing process that can create a minutely patterned thin film of protective materials over a substrate, such as a silicon wafer, in order to protect selected areas of it during subsequent etchin ...
and
microfabrication Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" ...
, which are essential for
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
manufacture, and for
laser surgery Laser surgery is a type of surgery that cuts tissue using a laser in contrast to using a scalpel. Soft-tissue laser surgery is used in a variety of applications in humans ( general surgery, neurosurgery, ENT, dentistry, orthodontics, and ...
, including laser
angioplasty Angioplasty, also known as balloon angioplasty and percutaneous transluminal angioplasty, is a minimally invasive procedure, minimally invasive endovascular surgery, endovascular Medical procedure, procedure used to widen narrowed or obstructe ...
and
eye surgery Eye surgery, also known as ophthalmic surgery or ocular surgery, is surgery performed on the eye or its adnexa. Eye surgery is part of ophthalmology and is performed by an ophthalmologist or eye surgeon. The eye is a fragile organ, and require ...
. Some noble gases have direct application in medicine. Helium is sometimes used to improve the ease of breathing of people with
asthma Asthma is a common long-term inflammatory disease of the airways of the lungs. It is characterized by variable and recurring symptoms, reversible airflow obstruction, and easily triggered bronchospasms. Symptoms include episodes of wh ...
. Xenon is used as an
anesthetic An anesthetic (American English) or anaesthetic (British English; see spelling differences) is a drug used to induce anesthesia ⁠— ⁠in other words, to result in a temporary loss of sensation or awareness. They may be divided into t ...
because of its high solubility in lipids, which makes it more potent than the usual
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, is a chemical compound, an Nitrogen oxide, oxide of nitrogen with the Chemical formula, formula . At room te ...
, and because it is readily eliminated from the body, resulting in faster recovery. Xenon finds application in medical imaging of the lungs through hyperpolarized MRI. Radon, which is highly radioactive and is only available in minute amounts, is used in
radiotherapy Radiation therapy or radiotherapy (RT, RTx, or XRT) is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle ...
. Noble gases, particularly xenon, are predominantly used in
ion engines An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. An ion thruster creates a cloud of positive ions from a neutral gas by ionizing it to extract some electrons from its atoms. The i ...
due to their inertness. Since ion engines are not driven by chemical reactions, chemically inert fuels are desired to prevent unwanted reaction between the fuel and anything else on the engine. Oganesson is too unstable to work with and has no known application other than research.


Noble gases in Earth sciences application

The relative isotopic abundances of noble gases serve as an important
geochemical Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the ...
tracing tool in
earth science Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres ...
. They can unravel the Earth's degassing history and its effects to the surrounding environment (i.e.,
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
composition). Due to their inert nature and low abundances, change in the noble gas concentration and their isotopic ratios can be used to resolve and quantify the processes influencing their current signatures across
geological Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth s ...
settings.   


Helium

Helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
has two abundant isotopes:
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with ...
, which is primordial with high abundance in
earth's core The internal structure of Earth are the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere, and solid mantle, a liquid outer core whose flow g ...
and mantle, and
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
, which originates from decay of
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s (232Th, 235,238U) abundant in the
earth's crust Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper ...
. Isotopic ratios of helium are represented by RA value, a value relative to air measurement (3He/4He = 1.39*10−6).
Volatiles Volatility or volatile may refer to: Chemistry * Volatility (chemistry), a measuring tendency of a substance or liquid to vaporize easily ** Volatile organic compounds, organic or carbon compounds that can evaporate at normal temperature and pre ...
that originate from the earth's crust have a 0.02-0.05 RA, which indicate an enrichment of helium-4. Volatiles that originate from deeper sources such as subcontinental lithospheric mantle (SCLM), have a 6.1± 0.9 RA and mid-oceanic ridge basalts (MORB) display higher values (8 ± 1 RA).
Mantle plume A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic ho ...
samples have even higher values than > 8 RA.
Solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
, which represent an unmodified primordial signature is reported to have ~ 330 RA.   


Neon

Neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
has three main stable isotopes:20Ne, 21Ne and 22Ne, with 20Ne produced by cosmic
nucleogenic A nucleogenic isotope, or nuclide, is one that is produced by a natural terrestrial nuclear reaction, other than a reaction beginning with cosmic rays (the latter nuclides by convention are called by the different term cosmogenic). The nuclear rea ...
reactions, causing high abundance in the atmosphere. 21Ne and 22Ne are produced in the earth's crust as a result of interactions between alpha and neutron particles with light elements; 18O, 19F and 24,25Mg. The neon ratios (20Ne/22Ne and 21Ne/22Ne) are systematically used to discern the heterogeneity in the
Earth's mantle Earth's mantle is a layer of silicate mineral, silicate rock between the Earth's crust, crust and the Earth's outer core, outer core. It has a mass of and makes up 67% of the mass of Earth. It has a thickness of making up about 46% of Earth's ...
and volatile sources. Complimenting He isotope data, neon isotope data additionally provide insight to thermal evolution of Earth's systems.       


Argon

Argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
has three stable isotopes: 36Ar, 38Ar and 40Ar. 36Ar and 38Ar are primordial, with their inventory on the earth's crust dependent on the equilibration of
meteoric water Meteoric water, derived from precipitation such as snow and rain, includes water from lakes, rivers, and ice melts, all of which indirectly originate from precipitation. The journey of meteoric water from the atmosphere to the Earth's surface is a ...
with the crustal fluids. This explains huge inventory of 36Ar in the atmosphere. Production of these two isotopes (36Ar and 38Ar) is negligible within the earth's crust, only limited concentrations of 38Ar can be produced by interaction between alpha particles from decay of 235,238U and 232Th and light elements (37Cl and 41K). While 36Ar is continuously being produced by Beta-decay of 36Cl. 40Ar is a product of radiogenic decay of 40K. Different endmembers values for 40Ar/36Ar have been reported; Air = 295.5, MORB = 40,000, and crust = 3000.   


Krypton

Krypton Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
has several
isotopes Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but ...
, with 78, 80, 82Kr being primordial, while 83,84, 86Kr results from spontaneous fission of 244Pu and radiogenic decay of 238U. Krypton's isotopes geochemical signature in mantle reservoirs resembling the modern atmosphere. preserves the solar-like primordial signature. Krypton isotopes have been used to decipher the mechanism of volatiles delivery to earth's system, which had great implication to evolution of earth (nitrogen, oxygen, and oxygen) and emergence of life. This is largely due to a clear distinction of krypton isotope signature from various sources such as chondritic material,
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
and
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
ary.  


Xenon

Xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
has nine isotopes, most of which are produced by the radiogenic decay. Krypton and xenon noble gases requires pristine, robust geochemical sampling protocol to avoid atmospheric contamination. Furthermore, sophisticated instrumentation is required to resolve mass peaks among many isotopes with narrow mass difference during analysis.   


Sampling of noble gases

Noble gas measurements can be obtained from sources like volcanic vents, springs, and geothermal wells following specific sampling protocols. The classic specific sampling protocol include the following. * Copper tubes - These are standard refrigeration copper tubes, cut to ~10 cm³ with a 3/8” outer diameter, and are used for sampling volatile discharges by connecting an inverted funnel to the tube via TygonⓇ tubing, ensuring one-way inflow and preventing air contamination. Their malleability allows for cold welding or pinching off to seal the ends after sufficient flushing with the sample. ** Giggenbach bottles - Giggenbach bottles are evacuated glass flasks with a Teflon stopcock, used for sampling and storing gases. They require pre-evacuation before sampling, as noble gases accumulate in the headspace. These bottles were first invented and distributed by a Werner F. Giggenbach, a German chemist.


= Analysis of noble gases

= Noble gases have numerous isotopes and subtle mass variation that requires high-precision detection systems. Originally, scientists used magnetic sector mass spectrometry, which is time-consuming and has low sensitivity due to "peak jumping mode". Multiple-collector mass spectrometers, like Quadrupole mass spectrometers (QMS), enable simultaneous detection of isotopes, improving sensitivity and throughput. Before analysis, sample preparation is essential due to the low abundance of noble gases, involving extraction, purification system. Extraction allows liberation of noble gases from their carrier (major phase; fluid or solid) while purification remove impurities and improve concentration per unit sample volume. Cryogenic traps are used for sequential analysis without peak interference by stepwise temperature raise. Research labs have successfully developed miniaturized field-based mass spectrometers, such as the portable mass spectrometer
miniRuedi
, which can analyze noble gases with an analytical uncertainty of 1-3% using low-cost vacuum systems and quadrupole mass analyzers.


Discharge color

The color of gas discharge emission depends on several factors, including the following: * discharge parameters (local value of
current density In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ...
and
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
, temperature, etc. – note the color variation along the discharge in the top row); * gas purity (even small fraction of certain gases can affect color); * material of the discharge tube envelope – note suppression of the UV and blue components in the bottom-row tubes made of thick household glass.


See also

* Noble gas (data page), for extended tables of physical properties. *
Noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
, for metals that are resistant to corrosion or oxidation. *
Inert gas An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
, for any gas that is not reactive under normal circumstances. *
Industrial gas Industrial gases are the gaseous materials that are Manufacturing, manufactured for use in Industrial sector, industry. The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other ...
*
Octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ru ...


Notes


References

* * * * * * * * {{DEFAULTSORT:Noble Gas Groups (periodic table)