HOME

TheInfoList



OR:

Myogenesis is the formation of skeletal muscular tissue, particularly during
embryonic development In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm, sperm cell (spermat ...
.
Muscle fibers Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
generally form through the fusion of precursor myoblasts into multinucleated fibers called myotubes. In the early development of an
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
, myoblasts can either proliferate, or differentiate into a myotube. What controls this choice in vivo is generally unclear. If placed in cell culture, most myoblasts will proliferate if enough
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by the macrophages. They are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in ...
(FGF) or another growth factor is present in the medium surrounding the cells. When the growth factor runs out, the myoblasts cease division and undergo terminal differentiation into myotubes. Myoblast differentiation proceeds in stages. The first stage involves cell cycle exit and the commencement of expression of certain genes. The second stage of differentiation involves the alignment of the myoblasts with one another. Studies have shown that even rat and chick myoblasts can recognise and align with one another, suggesting evolutionary conservation of the mechanisms involved. The third stage is the actual
cell fusion Cell fusion is an important cellular process in which several uninucleate cells (cells with a single nucleus) combine to form a multinucleate cell, known as a syncytium. Cell fusion occurs during differentiation of myoblasts, osteoclasts and ...
itself. In this stage, the presence of
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
ions is critical. Fusion in humans is aided by a set of
metalloproteinase A metalloproteinase, or metalloprotease, is any protease enzyme whose catalytic mechanism involves a metal. An example is ADAM12 which plays a significant role in the fusion of muscle cells during embryo development, in a process known as myoge ...
s coded for by the ''
ADAM12 Disintegrin and metalloproteinase domain-containing protein 12 (previously Meltrin) is an enzyme that in humans is encoded by the ''ADAM12'' gene. ADAM12 has two splice variants: ADAM12-L, the long form, has a transmembrane region and ADAM12-S, ...
''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
, and a variety of other proteins. Fusion involves recruitment of
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
to the
plasma membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
, followed by close apposition and creation of a pore that subsequently rapidly widens.
Gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s and their protein products that are expressed during the process include: myocyte enhancer factors,
myogenic regulatory factor Myogenic regulatory factors (MRF) are basic helix-loop-helix (bHLH) transcription factors that regulate myogenesis: MyoD, Myf5, myogenin, and MRF4. These proteins contain a conserved basic DNA binding domain that binds the E box DNA motif. Th ...
s, and
serum response factor Serum response factor, also known as SRF, is a transcription factor protein. Function Serum response factor is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors. This protein binds to the serum ...
. Expression of skeletal
alpha-actin Actin is a protein family, family of Globular protein, globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in myofibril, muscle fibrils. It is found in essentially all Eukaryote, eukaryotic cel ...
is also regulated by the
androgen receptor The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily 3, group C, member 4), is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in th ...
; steroids can thereby regulate myogenesis.


Overview

There are a number of stages (listed below) of muscle development, or myogenesis. Each stage has various associated genetic factors lack of which will result in muscular defects.


Stages


Delamination

Associated Genetic Factors:
PAX3 The PAX3 (paired box gene 3) gene encodes a member of the paired box or Pax genes, PAX family of transcription factors. The PAX family consists of nine human (PAX1-PAX9) and nine mouse (Pax1-Pax9) members arranged into four subfamilies. Human PAX ...
and
c-Met Hepatocyte growth factor receptor (HGF receptor) is a protein that in humans is encoded by the ''MET'' gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce t ...

Mutations in PAX3 can cause a failure in c-Met expression. Such a mutation would result in a lack of lateral migration. PAX3 mediates the transcription of c-Met and is responsible for the activation of MyoD expression—one of the functions of MyoD is to promote the regenerative ability of
satellite cells Myosatellite cells, also known as satellite cells, muscle stem cells or MuSCs, are small multipotent cells with very little cytoplasm found in mature muscle. Satellite cells are precursors to skeletal muscle cells, able to give rise to satellit ...
(described below). PAX3 is generally expressed at its highest levels during
embryonic development In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm, sperm cell (spermat ...
and is expressed at a lesser degree during the fetal stages; it is expressed in migrating hypaxial cells and dermomyotome cells, but is not expressed at all during the development of facial muscle. Mutations in Pax3 can cause a variety of complications including
Waardenburg syndrome Waardenburg syndrome is a group of rare genetic conditions characterised by at least some degree of congenital hearing loss and pigmentation deficiencies, which can include bright blue eyes (or Heterochromia iridum, one blue eye and one brown ey ...
I and III as well as craniofacial-deafness-hand syndrome. Waardenburg syndrome is most often associated with congenital disorders involving the intestinal tract and spine, an elevation of the scapula, among other symptoms. Each stage has various associated genetic factors without which will result in muscular defects.


Migration

Associated Genetic Factors:
c-Met Hepatocyte growth factor receptor (HGF receptor) is a protein that in humans is encoded by the ''MET'' gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce t ...
/ HGF and
LBX1 Transcription factor LBX1 is a protein that in humans is encoded by the ''LBX1'' gene. This gene and the orthologous mouse gene were found by their homology to the Drosophila lady bird early and late homeobox genes. In the mouse, this gene is ...

Mutations in these genetic factors causes a lack of migration. LBX1 is responsible for the development and organization of muscles in the dorsal forelimb as well as the movement of dorsal muscles into the limb following delamination. Without LBX1, limb muscles will fail to form properly; studies have shown that hindlimb muscles are severely affected by this deletion while only flexor muscles form in the forelimb muscles as a result of ventral muscle migration. c-Met is a tyrosine kinase receptor that is required for the survival and proliferation of migrating myoblasts. A lack of c-Met disrupts secondary myogenesis and—as in LBX1—prevents the formation of limb musculature. It is clear that c-Met plays an important role in delamination and proliferation in addition to migration. PAX3 is needed for the transcription of c-Met.


Proliferation

Associated Genetic Factors:
PAX3 The PAX3 (paired box gene 3) gene encodes a member of the paired box or Pax genes, PAX family of transcription factors. The PAX family consists of nine human (PAX1-PAX9) and nine mouse (Pax1-Pax9) members arranged into four subfamilies. Human PAX ...
,
c-Met Hepatocyte growth factor receptor (HGF receptor) is a protein that in humans is encoded by the ''MET'' gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce t ...
, Mox2,
MSX1 Homeobox protein MSX-1, is a protein that in humans is encoded by the ''MSX1'' gene. MSX1 transcripts are not only found in thyrotrope-derived TSH cells, but also in the TtT97 thyrotropic tumor, which is a well differentiated hyperplastic tissue ...
, Six, Myf5, and
MyoD MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins kn ...
Mox2 (also referred to as MEOX-2) plays an important role in the induction of
mesoderm The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.Langman's Medical ...
and regional specification. Impairing the function of Mox2 will prevent the proliferation of myogenic precursors and will cause abnormal patterning of limb muscles. Specifically, studies have shown that hindlimbs are severely reduced in size while specific forelimb muscles will fail to form. Myf5 is required for proper myoblast proliferation. Studies have shown that mice muscle development in the intercostal and paraspinal regions can be delayed by inactivating Myf-5. Myf5 is considered to be the earliest expressed regulatory factor gene in myogenesis. If Myf-5 and MyoD are both inactivated, there will be a complete absence of skeletal muscle. These consequences further reveal the complexity of myogenesis and the importance of each genetic factor in proper muscle development.


Determination

Associated Genetic Factors: Myf5 and
MyoD MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins kn ...

One of the most important stages in myogenesis determination requires both Myf5 and MyoD to function properly in order for myogenic cells to progress normally. Mutations in either associated genetic factor will cause the cells to adopt non-muscular phenotypes. As stated earlier, the combination of Myf5 and MyoD is crucial to the success of myogenesis. Both MyoD and Myf5 are members of the myogenic bHLH (basic helix-loop-helix) proteins transcription factor family. Cells that make myogenic bHLH transcription factors (including MyoD or Myf5) are committed to development as a muscle cell. Consequently, the simultaneous deletion of Myf5 and MyoD also results in a complete lack of
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
formation. Research has shown that MyoD directly activates its own gene; this means that the protein made binds the ''myoD'' gene and continues a cycle of MyoD protein production. Meanwhile, Myf5 expression is regulated by
Sonic hedgehog Sonic hedgehog protein (SHH) is a major signaling molecule of embryonic development in humans and animals, encoded by the ''SHH'' gene. This signaling molecule is key in regulating embryonic morphogenesis in all animals. SHH controls organoge ...
, Wnt1, and MyoD itself. By noting the role of MyoD in regulating Myf5, the crucial interconnectedness of the two genetic factors becomes clear.
Serum response factor Serum response factor, also known as SRF, is a transcription factor protein. Function Serum response factor is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors. This protein binds to the serum ...
is needed for myogenesis and muscle development. Interaction of SRF with other proteins, such as
steroid hormone receptor Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors (typically cytoplasmic or nuclear) and initiate signal transduction for steroid hormones which ...
s, may contribute to regulation of muscle growth by
steroid A steroid is an organic compound with four fused compound, fused rings (designated A, B, C, and D) arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes t ...
s.


Differentiation

Associated genetic factors:
Myogenin Myogenin, is a transcriptional activator encoded by the ''MYOG'' gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogeni ...
, Mcf2, Six,
MyoD MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins kn ...
, and Myf6
Mutations in these associated genetic factors will prevent myocytes from advancing and maturing.
Myogenin Myogenin, is a transcriptional activator encoded by the ''MYOG'' gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogeni ...
(also known as Myf4) is required for the fusion of myogenic precursor cells to either new or previously existing fibers. In general, myogenin is associated with amplifying expression of genes that are already being expressed in the organism. Deleting myogenin results in nearly complete loss of differentiated muscle fibers and severe loss of skeletal muscle mass in the lateral/ventral body wall. Myf-6 (also known as MRF4 or Herculin) is important to myotube differentiation and is specific to skeletal muscle. Mutations in Myf-6 can provoke disorders including centronuclear myopathy and Becker muscular dystrophy.


Specific muscle formation

Associated genetic factors:
LBX1 Transcription factor LBX1 is a protein that in humans is encoded by the ''LBX1'' gene. This gene and the orthologous mouse gene were found by their homology to the Drosophila lady bird early and late homeobox genes. In the mouse, this gene is ...
and Mox2
In specific muscle formation, mutations in associated genetic factors begin to affect specific muscular regions. Because of its large responsibility in the movement of dorsal muscles into the limb following delamination, mutation or deletion of Lbx1 results in defects in extensor and hindlimb muscles. As stated in the Proliferation section, Mox2 deletion or mutation causes abnormal patterning of limb muscles. The consequences of this abnormal patterning include severe reduction in size of hindlimbs and complete absence of forelimb muscles.


Satellite cells

Associated genetic factors:
PAX7 Paired box protein Pax-7 is a protein that in humans is encoded by the ''PAX7'' gene. Function Pax-7 plays a role in neural crest development and gastrulation, and it is an important factor in the expression of neural crest markers such as Slu ...

Mutations in Pax7 will prevent the formation of satellite cells and, in turn, prevent postnatal muscle growth.
Satellite cells Myosatellite cells, also known as satellite cells, muscle stem cells or MuSCs, are small multipotent cells with very little cytoplasm found in mature muscle. Satellite cells are precursors to skeletal muscle cells, able to give rise to satellit ...
are described as quiescent myoblasts and neighbor muscle fiber
sarcolemma The sarcolemma (''sarco'' (from ''sarx'') from Greek; flesh, and ''lemma'' from Greek; sheath), also called the myolemma, is the cell membrane surrounding a skeletal muscle fibre or a cardiomyocyte. It consists of a lipid bilayer and a thin ...
. They are crucial for the repair of muscle, but have a very limited ability to replicate. Activated by stimuli such as injury or high mechanical load, satellite cells are required for muscle regeneration in adult organisms. In addition, satellite cells have the capability to also differentiate into bone or fat. In this way, satellite cells have an important role in not only muscle development, but in the maintenance of muscle through adulthood.


Skeletal muscle

During
embryogenesis An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male ...
, the dermomyotome and/or myotome in the
somites The somites (outdated term: primitive segments) are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide in ...
contain the myogenic progenitor cells that will evolve into the prospective skeletal muscle. The determination of dermomyotome and myotome is regulated by a gene regulatory network that includes a member of the
T-box T-box refers to a group of transcription factors involved in embryo, embryonic limb development, limb and heart development. Every T-box protein has a relatively large DNA-binding domain, generally comprising about a third of the entire protein ...
family, tbx6, ripply1, and mesp-ba. Skeletal myogenesis depends on the strict regulation of various gene subsets in order to differentiate the myogenic progenitors into myofibers. Basic helix-loop-helix (bHLH) transcription factors, MyoD, Myf5, myogenin, and MRF4 are critical to its formation. MyoD and Myf5 enable the differentiation of myogenic progenitors into myoblasts, followed by myogenin, which differentiates the myoblast into myotubes. MRF4 is important for blocking the transcription of muscle-specific promoters, enabling skeletal muscle progenitors to grow and proliferate before differentiating. There are a number of events that occur in order to propel the specification of muscle cells in the somite. For both the lateral and medial regions of the somite,
paracrine In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication (biology), cellular communication in which a Cell (biology), cell produces a signal to induce changes in nearby cells, altering the behaviour of ...
factors induce myotome cells to produce MyoD protein—thereby causing them to develop as muscle cells. A transcription factor ( TCF4) of connective tissue
fibroblast A fibroblast is a type of cell (biology), biological cell typically with a spindle shape that synthesizes the extracellular matrix and collagen, produces the structural framework (Stroma (tissue), stroma) for animal Tissue (biology), tissues, and ...
s is involved in the regulation of myogenesis. Specifically, it regulates the type of muscle fiber developed and its maturations. Low levels of TCF4 promote both slow and fast myogenesis, overall promoting the maturation of muscle fiber type. Thereby this shows the close relationship of muscle with connective tissue during the embryonic development. Regulation of myogenic differentiation is controlled by two pathways: the
phosphatidylinositol 3-kinase Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which i ...
/Akt pathway and the Notch/Hes pathway, which work in a collaborative manner to suppress MyoD transcription. The O subfamily of the forkhead proteins ( FOXO) play a critical role in regulation of myogenic differentiation as they stabilize Notch/Hes binding. Research has shown that knockout of FOXO1 in mice increases MyoD expression, altering the distribution of fast-twitch and slow-twitch fibers.


Muscle fusion

Primary muscle fibers originate from primary myoblasts and tend to develop into slow muscle fibers. Secondary muscle fibers then form around the primary fibers near the time of innervation. These muscle fibers form from secondary myoblasts and usually develop as fast muscle fibers. Finally, the muscle fibers that form later arise from satellite cells. Two genes significant in muscle fusion are
Mef2 In the field of molecular biology, myocyte enhancer factor-2 (Mef2) proteins are a family of transcription factors which through control of gene expression are important regulators of cellular differentiation and consequently play a critical rol ...
and the twist transcription factor. Studies have shown knockouts for Mef2C in mice lead to muscle defects in cardiac and smooth muscle development, particularly in fusion. The twist gene plays a role in muscle differentiation. The SIX1 gene plays a critical role in hypaxial muscle differentiation in myogenesis. In mice lacking this gene, severe muscle
hypoplasia Hypoplasia (; adjective form ''hypoplastic'') is underdevelopment or incomplete development of a tissue or organ. Class A proteins are the most abundant and are synthesized continuously throughout myogenesis. Class B proteins are proteins that are initiated during myogenesis and continued throughout development. Class C proteins are those synthesized at specific times during development. Also 3 different forms of
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
were identified during myogenesis. Sim2, a BHLH-Pas transcription factor, inhibits transcription by active repression and displays enhanced expression in ventral limb muscle masses during chick and mouse embryonic development. It accomplishes this by repressing MyoD transcription by binding to the enhancer region, and prevents premature myogenesis. Delta1 expression in
neural crest cells The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, an ...
is necessary for muscle differentiation of the
somites The somites (outdated term: primitive segments) are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide in ...
, through the
Notch signaling pathway The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animal, animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTC ...
. Gain and loss of this ligand in
neural crest cells The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, an ...
results in delayed or premature myogenesis.


Techniques

The significance of
alternative splicing Alternative splicing, alternative RNA splicing, or differential splicing, is an alternative RNA splicing, splicing process during gene expression that allows a single gene to produce different splice variants. For example, some exons of a gene ma ...
was elucidated using microarrary analysis of differentiating C2C12 myoblasts. 95 alternative splicing events occur during C2C12 differentiation in myogenesis. Therefore,
alternative splicing Alternative splicing, alternative RNA splicing, or differential splicing, is an alternative RNA splicing, splicing process during gene expression that allows a single gene to produce different splice variants. For example, some exons of a gene ma ...
is necessary in myogenesis.


Systems approach

Systems approach is a method used to study myogenesis, which manipulates a number of different techniques like
high-throughput screening High-throughput screening (HTS) is a method for scientific discovery especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handling device ...
technologies, genome wide cell-based assays, and
bioinformatics Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
, to identify different factors of a system. This has been specifically used in the investigation of skeletal muscle development and the identification of its regulatory network.
Systems approach Systems thinking is a way of making sense of the complexity of the world by looking at it in terms of wholes and relationships rather than by splitting it down into its parts.Anderson, Virginia, & Johnson, Lauren (1997). ''Systems Thinking Ba ...
using
high-throughput sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, thymine, cytosine, and guanine. The ...
and ChIP-chip analysis has been essential in elucidating the targets of myogenic regulatory factors like MyoD and myogenin, their inter-related targets, and how MyoD acts to alter the epigenome in myoblasts and myotubes. This has also revealed the significance of PAX3 in myogenesis, and that it ensures the survival of myogenic progenitors. This approach, using cell based high-throughput transfection assay and whole-mount
in situ hybridization ''In situ'' hybridization (ISH) is a type of Hybridisation (molecular biology), hybridization that uses a labeled complementary DNA, RNA or modified nucleic acid strand (i.e., a Hybridization probe, probe) to localize a specific DNA or RNA seq ...
, was used in identifying the myogenetic regulator RP58, and the tendon differentiation gene, Mohawk homeobox.


References


External links


Gilbert, Scott F. ''Developmental Biology'', Sixth Edition - Myogenesis - The Development of Muscle
{{Muscular physiology Animal developmental biology Muscular system