Multilayer Perceptrons
   HOME

TheInfoList



OR:

A thin film is a layer of materials ranging from fractions of a
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
(
monolayer A monolayer is a single, closely packed layer of entities, commonly atoms or molecules. Monolayers can also be made out of cells. ''Self-assembled monolayers'' form spontaneously on surfaces. Monolayers of layered crystals like graphene and molyb ...
) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household
mirror A mirror, also known as a looking glass, is an object that Reflection (physics), reflects an image. Light that bounces off a mirror forms an image of whatever is in front of it, which is then focused through the lens of the eye or a camera ...
, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of
silvering Silvering is the chemical process of coating a non-conductive substrate such as glass with a reflective substance, to produce a mirror. While the metal is often silver, the term is used for the application of any reflective metal. Process Mo ...
was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as
sputtering In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and c ...
. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices,
integrated passive devices Integrated passive devices (IPDs), also known as integrated passive components (IPCs) or embedded passive components (EPC), are electronic components where resistors (R), capacitors (C), inductors (L)/coils/chokes, microstriplines, impedance matchi ...
,
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corre ...
s,
optical coating An optical coating is one or more thin-film optics, thin layers of material deposited on an optical component such as a lens (optics), lens, prism (optics), prism or mirror, which alters the way in which the optic reflection (physics), reflects a ...
s (such as
antireflective An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the effi ...
coatings), hard coatings on cutting tools, and for both energy generation (e.g.
thin-film solar cell Thin-film solar cells are a type of solar cell made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nan ...
s) and storage ( thin-film batteries). It is also being applied to pharmaceuticals, via
thin-film drug delivery Thin-film drug delivery uses a dissolving film or oral drug strip to administer drugs via absorption in the mouth ( buccally or sublingually) and/or via the small intestines ( enterically). A film is prepared using hydrophilic polymers that r ...
. A stack of thin films is called a
multilayer A thin film is a layer of materials ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many a ...
. In addition to their applied interest, thin films play an important role in the development and study of materials with new and unique properties. Examples include multiferroic materials, and
superlattice A superlattice is a periodic structure of layers of two (or more) materials. Typically, the thickness of one layer is several nanometers. It can also refer to a lower-dimensional structure such as an array of quantum dots or quantum wells. Dis ...
s that allow the study of quantum phenomena.


Nucleation

Nucleation In thermodynamics, nucleation is the first step in the formation of either a new Phase (matter), thermodynamic phase or Crystal structure, structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically def ...
is an important step in growth that helps determine the final structure of a thin film. Many growth methods rely on nucleation control such as atomic-layer epitaxy (atomic layer deposition). Nucleation can be modeled by characterizing surface process of
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
,
desorption Desorption is the physical process where Adsorption, adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding e ...
, and
surface diffusion Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters ( adparticles) at solid material surfaces.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 325 The process can generally be thought of in ...
.


Adsorption and desorption

Adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
is the interaction of a vapor atom or molecule with a substrate surface. The interaction is characterized the sticking coefficient, the fraction of incoming species thermally equilibrated with the surface.
Desorption Desorption is the physical process where Adsorption, adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding e ...
reverses adsorption where a previously adsorbed molecule overcomes the bounding energy and leaves the substrate surface. The two types of adsorptions,
physisorption Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely wikt:perturb, perturbed upon adsorption. Overview The fundamental interacting force of physisorption is Van der Waals ...
and
chemisorption Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like co ...
, are distinguished by the strength of atomic interactions. Physisorption describes the van der Waals bonding between a stretched or bent molecule and the surface characterized by adsorption energy E_. Evaporated molecules rapidly lose kinetic energy and reduces its free energy by bonding with surface atoms. Chemisorption describes the strong electron transfer (ionic or covalent bond) of molecule with substrate atoms characterized by adsorption energy E_. The process of physic- and chemisorption can be visualized by the potential energy as a function of distance. The equilibrium distance for physisorption is further from the surface than chemisorption. The transition from physisorbed to chemisorbed states are governed by the effective energy barrier E_. Crystal surfaces have specific bonding sites with larger E_ values that would preferentially be populated by vapor molecules to reduce the overall free energy. These stable sites are often found on step edges, vacancies and screw dislocations. After the most stable sites become filled, the adatom-adatom (vapor molecule) interaction becomes important.


Nucleation models

Nucleation kinetics can be modeled considering only adsorption and desorption. First consider case where there are no mutual
adatom An adatom is an atom that lies on a crystal surface, and can be thought of as the opposite of a surface vacancy. This term is used in surface chemistry and epitaxy, when describing single atoms lying on surfaces and surface roughness. The word ...
interactions, no clustering or interaction with step edges. The rate of change of adatom surface density n, where J is the net flux, \tau_ is the mean surface lifetime prior to desorption and \sigma is the sticking coefficient: =J \sigma- n = J\sigma\tau_\left -\exp\left(\right)\rightn = J\sigma\tau_\left exp\left(\right)\right/math> Adsorption can also be modeled by different isotherms such as Langmuir model and BET model. The Langmuir model derives an equilibrium constant b based on the adsorption reaction of vapor adatom with vacancy on the substrate surface. The BET model expands further and allows adatoms deposition on previously adsorbed adatoms without interaction between adjacent piles of atoms. The resulting derived surface coverage is in terms of the equilibrium vapor pressure and applied pressure. Langmuir model where P_ is the vapor pressure of adsorbed adatoms: \theta = BET model where p_ is the equilibrium vapor pressure of adsorbed adatoms and p is the applied vapor pressure of adsorbed adatoms: \theta = As an important note, surface crystallography and differ from the bulk to minimize the overall free electronic and bond energies due to the broken bonds at the surface. This can result in a new equilibrium position known as “selvedge”, where the parallel bulk lattice symmetry is preserved. This phenomenon can cause deviations from theoretical calculations of nucleation.


Surface diffusion

Surface diffusion Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters ( adparticles) at solid material surfaces.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 325 The process can generally be thought of in ...
describes the lateral motion of adsorbed atoms moving between energy minima on the substrate surface. Diffusion most readily occurs between positions with lowest intervening potential barriers. Surface diffusion can be measured using glancing-angle ion scattering. The average time between events can be describes by: \tau_=(1/v_)\exp(E_/kT_) In addition to adatom migration, clusters of adatom can coalesce or deplete. Cluster coalescence through processes, such as
Ostwald ripening Ostwald ripening is a phenomenon observed in solid solutions and liquid sols that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or s ...
and sintering, occur in response to reduce the total surface energy of the system. Ostwald repining describes the process in which islands of adatoms with various sizes grow into larger ones at the expense of smaller ones. Sintering is the coalescence mechanism when the islands contact and join.


Deposition

The act of applying a thin film to a surface is ''thin-film deposition'' – any technique for depositing a thin film of material onto a
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (aquatic environment), the earthy material that exi ...
or onto previously deposited layers. "Thin" is a relative term, but most deposition techniques control layer thickness within a few tens of
nanometre 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling), is a unit of length ...
s.
Molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
, the Langmuir–Blodgett method,
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
and molecular layer deposition allow a single layer of
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s or molecules to be deposited at a time. It is useful in the manufacture of
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
(for
reflective Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The ...
,
anti-reflective coating An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lens (optics), lenses, other optical elements, and photovoltaic cells to reduce reflection (physics), reflection. In typical ima ...
s or self-cleaning glass, for instance),
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
(layers of insulators,
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s, and conductors form
integrated circuits An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
),
packaging Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a coo ...
(i.e., aluminium-coated PET film), and in
contemporary art Contemporary art is a term used to describe the art of today, generally referring to art produced from the 1970s onwards. Contemporary artists work in a globally influenced, culturally diverse, and technologically advancing world. Their art is a ...
(see the work of Larry Bell). Similar processes are sometimes used where thickness is not important: for instance, the purification of copper by
electroplating Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the redox, reduction of cations of that metal by means of a direct current, direct electric cur ...
, and the deposition of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
and enriched
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
by a
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (electro ...
-like process after gas-phase processing. Deposition techniques fall into two broad categories, depending on whether the process is primarily
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
or physical.


Chemical deposition

Here, a fluid precursor undergoes a chemical change at a solid surface, leaving a solid layer. An everyday example is the formation of soot on a cool object when it is placed inside a flame. Since the fluid surrounds the solid object, deposition happens on every surface, with little regard to direction; thin films from chemical deposition techniques tend to be '' conformal'', rather than ''directional''. Chemical deposition is further categorized by the phase of the precursor:
Plating Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderab ...
relies on liquid precursors, often a solution of water with a salt of the metal to be deposited. Some plating processes are driven entirely by
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s in the solution (usually for
noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
s), but by far the most commercially important process is
electroplating Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the redox, reduction of cations of that metal by means of a direct current, direct electric cur ...
. In semiconductor manufacturing, an advanced form of electroplating known as electrochemical deposition is now used to create the copper conductive wires in advanced chips, replacing the chemical and physical deposition processes used to previous chip generations for aluminum wires Chemical solution deposition or chemical bath deposition uses a liquid precursor, usually a solution of
organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
powders dissolved in an organic solvent. This is a relatively inexpensive, simple thin-film process that produces stoichiometrically accurate crystalline phases. This technique is also known as the sol-gel method because the 'sol' (or solution) gradually evolves towards the formation of a gel-like diphasic system. The Langmuir–Blodgett method uses molecules floating on top of an aqueous subphase. The packing density of molecules is controlled, and the packed monolayer is transferred on a solid substrate by controlled withdrawal of the solid substrate from the subphase. This allows creating thin films of various molecules such as
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s, polymers and lipids with controlled particle packing density and layer thickness.
Spin coating Spin coating is a procedure used to deposit uniform thin films onto flat substrates. Usually a small amount of coating material in liquid form is applied on the center of the substrate, which is either spinning at low speed or not spinning at al ...
or spin casting, uses a liquid precursor, or sol-gel precursor deposited onto a smooth, flat substrate which is subsequently spun at a high velocity to centrifugally spread the solution over the substrate. The speed at which the solution is spun and the
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of the sol determine the ultimate thickness of the deposited film. Repeated depositions can be carried out to increase the thickness of films as desired. Thermal treatment is often carried out in order to crystallize the amorphous spin coated film. Such crystalline films can exhibit certain preferred orientations after crystallization on single
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
substrates.
Dip coating Dip coating is an industrial coating process which is used, for example, to manufacture bulk products such as coated fabrics and condoms and specialised coatings for example in the biomedical field. Dip coating is also commonly used in academic ...
is similar to spin coating in that a liquid precursor or sol-gel precursor is deposited on a substrate, but in this case the substrate is completely submerged in the solution and then withdrawn under controlled conditions. By controlling the withdrawal speed, the evaporation conditions (principally the humidity, temperature) and the volatility/viscosity of the solvent, the film thickness, homogeneity and nanoscopic morphology are controlled. There are two evaporation regimes: the capillary zone at very low withdrawal speeds, and the draining zone at faster evaporation speeds.
Chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (electro ...
generally uses a gas-phase precursor, often a
halide In chemistry, a halide (rarely halogenide) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a fl ...
or
hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
of the element to be deposited. In the case of
metalorganic vapour phase epitaxy Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
, an
organometallic Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and so ...
gas is used. Commercial techniques often use very low pressures of precursor gas. Plasma Enhanced Chemical Vapor Deposition uses an ionized vapor, or plasma, as a precursor. Unlike the soot example above, this method relies on electromagnetic means (electric current,
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
excitation), rather than a chemical-reaction, to produce a plasma.
Atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
and its sister technique molecular layer deposition, uses gaseous precursor to deposit conformal thin film's one layer at a time. The process is split up into two half reactions, run in sequence and repeated for each layer, in order to ensure total layer saturation before beginning the next layer. Therefore, one reactant is deposited first, and then the second reactant is deposited, during which a chemical reaction occurs on the substrate, forming the desired composition. As a result of the stepwise, the process is slower than chemical vapor deposition; however, it can be run at low temperatures. When performed on polymeric substrates, atomic layer deposition can become sequential infiltration synthesis, where the reactants diffuse into the polymer and interact with functional groups on the polymer chains.


Physical deposition

Physical deposition uses mechanical, electromechanical or thermodynamic means to produce a thin film of solid. An everyday example is the formation of
frost Frost is a thin layer of ice on a solid surface, which forms from water vapor that deposits onto a freezing surface. Frost forms when the air contains more water vapor than it can normally hold at a specific temperature. The process is simila ...
. Since most engineering materials are held together by relatively high energies, and chemical reactions are not used to store these energies, commercial physical deposition systems tend to require a low-pressure vapor environment to function properly; most can be classified as
physical vapor deposition Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
. The material to be deposited is placed in an energetic, entropic environment, so that particles of material escape its surface. Facing this source is a cooler surface which draws energy from these particles as they arrive, allowing them to form a solid layer. The whole system is kept in a vacuum deposition chamber, to allow the particles to travel as freely as possible. Since particles tend to follow a straight path, films deposited by physical means are commonly ''directional'', rather than ''conformal''. Examples of physical deposition include: A thermal
evaporator An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapour. Within evaporators, a ci ...
that uses an electric resistance heater to melt the material and raise its vapor pressure to a useful range. This is done in a high vacuum, both to allow the vapor to reach the substrate without reacting with or
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
against other gas-phase atoms in the chamber, and reduce the incorporation of impurities from the residual gas in the vacuum chamber. Only materials with a much higher
vapor pressure Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indicat ...
than the
heating element A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. Heat is generated by the passage of electric current through a resistor through a process known as Joule heating. He ...
can be deposited without contamination of the film.
Molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
is a particularly sophisticated form of thermal evaporation. An electron beam evaporator fires a high-energy beam from an
electron gun file:Egun.jpg, Electron gun from a cathode-ray tube file:Vidicon Electron Gun.jpg, The electron gun from an RCA Vidicon video camera tube An electron gun (also called electron emitter) is an electrical component in some vacuum tubes that produc ...
to boil a small spot of material; since the heating is not uniform, lower
vapor pressure Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indicat ...
materials can be deposited. The beam is usually bent through an angle of 270° in order to ensure that the gun filament is not directly exposed to the evaporant flux. Typical deposition rates for electron beam evaporation range from 1 to 10 nanometres per second. In
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
, slow streams of an element can be directed at the substrate, so that material deposits one atomic layer at a time. Compounds such as
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
are usually deposited by repeatedly applying a layer of one element (i.e.,
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
), then a layer of the other (i.e.,
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
), so that the process is chemical, as well as physical; this is known also as
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
. If the precursors in use are organic, then the technique is called molecular layer deposition. The beam of material can be generated by either physical means (that is, by a furnace) or by a chemical reaction ( chemical beam epitaxy).
Sputtering In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and c ...
relies on a plasma (usually a
noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
, such as
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
) to knock material from a "target" a few atoms at a time. The target can be kept at a relatively low temperature, since the process is not one of evaporation, making this one of the most flexible deposition techniques. It is especially useful for compounds or mixtures, where different components would otherwise tend to evaporate at different rates. Note, sputtering's step coverage is more or less conformal. It is also widely used in optical media. The manufacturing of all formats of CD, DVD, and BD are done with the help of this technique. It is a fast technique and also it provides a good thickness control. Presently, nitrogen and oxygen gases are also being used in sputtering.
Pulsed laser deposition Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. This material is vaporized from the ...
systems work by an
ablation Ablation ( – removal) is the removal or destruction of something from an object by vaporization, chipping, erosion, erosive processes, or by other means. Examples of ablative materials are described below, including spacecraft material for as ...
process. Pulses of focused
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
light vaporize the surface of the target material and convert it to plasma; this plasma usually reverts to a gas before it reaches the substrate. Thermal laser epitaxy uses focused light from a continuous-wave laser to thermally evaporate sources of material. By adjusting the power density of the laser beam, the evaporation of any solid, non-radioactive element is possible. The resulting atomic vapor is then deposited upon a substrate, which is also heated via a laser beam. The vast range of substrate and deposition temperatures allows of the
epitaxial Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
growth of various elements considered challenging by other thin film growth techniques.
Cathodic arc deposition {{Short description, Type of physical vapor deposition technique Cathodic arc deposition or Arc-PVD is a physical vapor deposition technique in which an electric arc is used to vaporize material from a cathode target. The vaporized material then co ...
(arc-physical vapor deposition), which is a kind of
ion beam deposition Ion beam deposition (IBD) is a process of applying materials to a target through the application of an ion beam. Ion beam deposition setup with mass separator An ion beam deposition apparatus typically consists of an ion source, ion optics, and ...
where an electrical arc is created that blasts ions from the cathode. The arc has an extremely high
power density Power density, defined as the amount of power (the time rate of energy transfer) per unit volume, is a critical parameter used across a spectrum of scientific and engineering disciplines. This metric, typically denoted in watts per cubic meter ...
resulting in a high level of
ionization Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
(30–100%), multiply charged ions, neutral particles, clusters and macro-particles (droplets). If a reactive gas is introduced during the evaporation process, dissociation,
ionization Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
and excitation can occur during interaction with the
ion flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport pheno ...
and a compound film will be deposited. Electrohydrodynamic deposition (electrospray deposition) is a relatively new process of thin-film deposition. The liquid to be deposited, either in the form of nanoparticle solution or simply a solution, is fed to a small capillary nozzle (usually metallic) which is connected to a high voltage. The substrate on which the film has to be deposited is connected to ground. Through the influence of electric field, the liquid coming out of the
nozzle A nozzle is a device designed to control the direction or characteristics of a fluid flow (specially to increase velocity) as it exits (or enters) an enclosed chamber or pipe (material), pipe. A nozzle is often a pipe or tube of varying cross ...
takes a conical shape ( Taylor cone) and at the apex of the cone a thin jet emanates which disintegrates into very fine and small positively charged droplets under the influence of Rayleigh charge limit. The droplets keep getting smaller and smaller and ultimately get deposited on the substrate as a uniform thin layer.


Growth modes

Frank–van der Merwe growth Frank–Van der Merwe growth (FM growth) is one of the three primary modes by which thin films grow epitaxially at a crystal surface or interface. It is also known as 'layer-by-layer growth'. It is considered an ideal growth model, requiring perf ...
("layer-by-layer"). In this growth mode the adsorbate-surface and adsorbate-adsorbate interactions are balanced. This type of growth requires lattice matching, and hence considered an "ideal" growth mechanism.
Stranski–Krastanov growth Stranski–Krastanov growth (SK growth, also Stransky–Krastanov or Stranski–Krastanow) is one of the three primary modes by which thin films grow epitaxially at a crystal surface or interface. Also known as 'layer-plus-island growth', the SK m ...
("joint islands" or "layer-plus-island"). In this growth mode the adsorbate-surface interactions are stronger than adsorbate-adsorbate interactions. Volmer–Weber ("isolated islands"). In this growth mode the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, hence "islands" are formed right away. There are three distinct stages of stress evolution that arise during Volmer-Weber film deposition. The first stage consists of the nucleation of individual atomic islands. During this first stage, the overall observed stress is very low. The second stage commences as these individual islands coalesce and begin to impinge on each other, resulting in an increase in the overall tensile stress in the film. This increase in overall tensile stress can be attributed to the formation of grain boundaries upon island coalescence that results in interatomic forces acting over the newly formed grain boundaries. The magnitude of this generated tensile stress depends on the density of the formed grain boundaries, as well as their grain-boundary energies. During this stage, the thickness of the film is not uniform because of the random nature of the island coalescence but is measured as the average thickness. The third and final stage of the Volmer-Weber film growth begins when the morphology of the film’s surface is unchanging with film thickness. During this stage, the overall stress in the film can remain tensile, or become compressive.   On a stress-thickness vs. thickness plot, an overall compressive stress is represented by a negative slope, and an overall tensile stress is represented by a positive slope. The overall shape of the stress-thickness vs. thickness curve depends on various processing conditions (such as temperature, growth rate, and material). Koch states that there are three different modes of Volmer-Weber growth. Zone I behavior is characterized by low grain growth in subsequent film layers and is associated with low atomic mobility. Koch suggests that Zone I behavior can be observed at lower temperatures. The zone I mode typically has small columnar grains in the final film. The second mode of Volmer-Weber growth is classified as Zone T, where the grain size at the surface of the film deposition increases with film thickness, but the grain size in the deposited layers below the surface does not change. Zone T-type films are associated with higher atomic mobilities, higher deposition temperatures, and V-shaped final grains. The final mode of proposed Volmer-Weber growth is Zone II type growth, where the grain boundaries in the bulk of the film at the surface are mobile, resulting in large yet columnar grains. This growth mode is associated with the highest atomic mobility and deposition temperature. There is also a possibility of developing a mixed Zone T/Zone II type structure, where the grains are mostly wide and columnar, but do experience slight growth as their thickness approaches the surface of the film. Although Koch focuses mostly on temperature to suggest a potential zone mode, factors such as deposition rate can also influence the final film microstructure.


Epitaxy

A subset of thin-film deposition processes and applications is focused on the so-called epitaxial growth of materials, the deposition of crystalline thin films that grow following the crystalline structure of the substrate. The term epitaxy comes from the Greek roots epi (ἐπί), meaning "above", and taxis (τάξις), meaning "an ordered manner". It can be translated as "arranging upon". The term homoepitaxy refers to the specific case in which a film of the same material is grown on a crystalline substrate. This technology is used, for instance, to grow a film which is more pure than the substrate, has a lower density of defects, and to fabricate layers having different doping levels. Heteroepitaxy refers to the case in which the film being deposited is different from the substrate. Techniques used for epitaxial growth of thin films include
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
,
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (electro ...
, and
pulsed laser deposition Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. This material is vaporized from the ...
.


Mechanical Behavior


Stress

Thin films may be biaxially loaded via stresses originated from their interface with a substrate. Epitaxial thin films may experience stresses from misfit strains between the coherent lattices of the film and substrate, and from the restructuring of the surface triple junction. Thermal stress is common in thin films grown at elevated temperatures due to differences in
thermal expansion coefficient Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature (usually excluding phase transitions). Substances usually contract with decreasing temp ...
s with the substrate. Differences in
interfacial energy Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to ...
and the growth and coalescence of
grains A grain is a small, hard, dry fruit ( caryopsis) – with or without an attached hull layer – harvested for human or animal consumption. A grain crop is a grain-producing plant. The two main types of commercial grain crops are cereals and le ...
contribute to intrinsic stress in thin films. These intrinsic stresses can be a function of film thickness. These stresses may be tensile or compressive and can cause cracking,
buckling In structural engineering, buckling is the sudden change in shape (Deformation (engineering), deformation) of a structural component under Structural load, load, such as the bowing of a column under Compression (physics), compression or the wrin ...
, or
delamination Delamination is a mode of failure where a material fractures into layers. A variety of materials, including Lamination, laminate Composite material, composites and concrete, can fail by delamination. Processing can create layers in materials, suc ...
along the surface. In epitaxial films, initially deposited atomic layers may have coherent lattice planes with the substrate. However, past a critical thickness misfit dislocations will form leading to relaxation of stresses in the film.


Strain

Films may experience a dilatational transformation strain e_T relative to its substrate due to a volume change in the film. Volume changes that cause dilatational strain may come from changes in temperature, defects, or phase transformations. A temperature change will induce a volume change if the film and substrate thermal expansion coefficients are different. The creation or annihilation of defects such as vacancies,
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sli ...
s, and
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional crystallographic defect, defects in the crystal structure, and tend to decrease the ...
will cause a volume change through densification. Phase transformations and concentration changes will cause volume changes via lattice distortions.


Thermal Strain

A mismatch of thermal expansion coefficients between the film and substrate will cause thermal strain during a temperature change. The elastic strain of the film relative to the substrate is given by: \varepsilon = -(\alpha_f-\alpha_s)(T-T_0) where \varepsilon is the elastic strain, \alpha_f is the thermal expansion coefficient of the film, \alpha_s is the thermal expansion coefficient of the substrate, T is the temperature, and T_0 is the initial temperature of the film and substrate when it is in a stress-free state. For example, if a film is deposited onto a substrate with a lower thermal expansion coefficient at high temperatures, then cooled to room temperature, a positive elastic strain will be created. In this case, the film will develop tensile stresses.


Growth Strain

Unlike thermal and epitaxial strain, which are driven by external factors such as temperature and substrate lattice parameters, growth strain originates from within the film itself. A change in density due to the creation or destruction of defects, phase changes, or compositional changes after the film is grown on the substrate will generate a growth strain. Such as in the Stranski–Krastanov mode, where the layer of film is strained to fit the substrate due to an increase in supersaturation and interfacial energy which shifts from island to island. The elastic strain to accommodate these changes is related to the dilatational strain e_T by: \varepsilon=-e_T/3 A film experiencing growth strains will be under biaxial tensile strain conditions, generating tensile stresses in biaxial directions in order to match the substrate dimensions.


Epitaxial Strains

Epitaxial strain refers to the elastic deformation of a thin film as a result of lattice mismatch with the single-crystal substrate it is deposited upon. The crystal structure and properties of thin films are significantly influenced by epitaxial strain. Epitaxial strain in thin films has been used to tailor various functional properties such as the dielectric constants of ferroelectric materials, the Curie temperature of superconducting materials. An epitaxially grown film on a thick substrate will have an inherent elastic strain given by: \varepsilon\approx where a_s and a_f are the lattice parameters of the substrate and film, respectively. It is assumed that the substrate is rigid due to its relative thickness. Therefore, all of the elastic strain occurs in the film to match the substrate. Beyond lattice mismatch, epitaxial strain is also influenced by the surface morphology of substrates. Substrates for epitaxial thin film growth are often prepared via annealing to have atomically flat steps. However, the size of these substrate steps relative to the unit cell size of the film is often mismatched and has been shown to contribute to the strain of the film, and thus, further impact the film’s properties.


= Film Thickness

= Epitaxial strain is a function of film thickness. For thin films, there is a critical thickness below which the film is epitaxially strained and above which it is energetically favorable for the film to become relaxed by the introduction of defects such as dislocations. The figure below depicts the effects of film thickness on epitaxial strain. Since the initial film has a larger lattice than that of the substrate, the in-plane lattice parameter of the film when strained (t < tcrit) is reduced to match that of the substrate, and due to Poisson’s ratio, the surface normal lattice parameter is expected to increase. When the film becomes relaxed (t > tcrit), dislocations at the film/substrate interface allow the lattice parameters of the film to approach those of the bulk material. Multiple models for critical thickness have been developed over the last 50 years. The first model to predict the critical thickness was developed by Matthews and Blakeslee (MB) in 1974, who derived their model through a force-balancing argument between the driving force for dislocation glide and the resistance from lattice mismatch stress. The MB model was developed for the specific case of a thin film on a thick substrate. However, subsequent experimental studies - particularly on SiGe thin films - found disagreement between the MB predictions and experimental data. The deviations between results and the model could likely be attributed to the fact that the MB theory neglects dislocation-dislocation interactions and dislocation nucleation mechanisms. To address these limitations of the MB model, other scientists proceeded to develop more advanced models that would more accurately predict experimental results. In the late 1980s, Dodson and Tsao considered an excess stress argument rather than a force-balancing argument to develop the DT model, which agreed well with experimental results for SiGe thin films. In 1996, Freund and Nix considered an energy-based argument to generalize the MB model for the case of a compliant substrate and epitaxial film.


Measuring stress and strain

The stresses in films deposited on flat substrates such as wafers can be calculated by measuring the
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
of the wafer due to the strain by the film. Using optical setups, such as those with lasers, allow for whole wafer characterization pre and post deposition. Lasers are reflected off the wafer in a grid pattern and distortions in the grid are used to calculate the curvature as well as measure the optical constants. Strain in thin films can also be measured by
x-ray diffraction X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. ...
,
Raman spectroscopy Raman spectroscopy () (named after physicist C. V. Raman) is a Spectroscopy, spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Ra ...
, or by milling a section of the film using a
focused ion beam Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a sc ...
and monitoring the relaxation via
scanning electron microscopy A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that ...
.


Wafer Curvature Measurements

A common method for determining the stress evolution of a film is to measure the wafer curvature during its deposition. Stoney relates a film’s average stress to its curvature through the following expression:   \kappa=\frac where M_s = \frac, where \Epsilon is the bulk elastic modulus of the material comprising the film, and \upsilon is the Poisson’s ratio of the material comprising the film, h_s is the thickness of the substrate, h_f is the height of the film, and \langle \sigma \rangle is the average stress in the film. The assumptions made regarding the Stoney formula assume that the film and substrate are smaller than the lateral size of the wafer and that the stress is uniform across the surface. Therefore the average stress thickness of a given film can be determined by integrating the stress over a given film thickness:   \langle \sigma \rangle = \frac \int_^ \sigma(z) dz where z is the direction normal to the substrate and \sigma(z) represents the in-place stress at a particular height of the film. The stress thickness (or force per unit width) is represented by \langle \sigma \rangle h_f is an important quantity as it is directionally proportional to the curvature by \frac. Because of this proportionality, measuring the curvature of a film at a given film thickness can directly determine the stress in the film at that thickness. The curvature of a wafer is determined by the average stress of in the film. However, if stress is not uniformly distributed in a film (as it would be for epitaxially grown film layers that have not relaxed so that the intrinsic stress is due to the lattice mismatch of the substrate and the film), it is impossible to determine the stress at a specific film height without continuous curvature measurements. If continuous curvature measurements are taken, the time derivative of the curvature data: \frac \propto \sigma(h_f) \frac + \int_^ \fracdz can show how the intrinsic stress is changing at any given point. Assuming that stress in the underlying layers of a deposited film remains constant during further deposition, we can represent the incremental stress \sigma(h_f) as:   \sigma (h_f) \propto \frac = \frac


Nanoindentation

Nanoindentation is a popular method of measuring the mechanical properties of films. Measurements can be used to compare coated and uncoated films to reveal the effects of surface treatment on both elastic and plastic responses of the film. Load-displacement curves may reveal information about cracking, delamination, and plasticity in both the film and substrate. The Oliver and Pharr method can be used to evaluate nanoindentation results for
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
and elastic modulus evaluation by the use of axisymmetric indenter geometries like a spherical indenter. This method assumes that during unloading, only elastic deformations are recovered (where reverse plastic deformation is negligible). The parameter P designates the load, h is the displacement relative to the undeformed coating surface and h_f is the final penetration depth after unloading. These are used to approximate the power law relation for unloading curves: P = \alpha (h - h_f)^m After the contact area A is calculated, the hardness is estimated by: H = \frac From the relationship of contact area, the unloading stiffness can be expressed by the relation: S = \beta \frac E_ \surd A Where E_ is the effective elastic modulus and takes into account elastic displacements in the specimen and indenter. This relation can also be applied to elastic-plastic contact, which is not affected by pile-up and sink-in during indentation. \frac = \frac + \frac Due to the low thickness of the films, accidental probing of the substrate is a concern. To avoid indenting beyond the film and into the substrate, penetration depths are often kept to less than 10% of the film thickness. For a conical or pyramidal indenters, the indentation depth scales as a/t where a is the radius of the contact circle and t is the film thickness. The ratio of penetration depth h and film thickness can be used as a scale parameter for soft films.


X-ray Diffraction (XRD)

X-ray diffraction is a powerful non-destructive technique for strain measurement in crystalline thin films. Accurate measurements of diffraction peak angular positions can be used to determine the lattice parameters of a thin film. Deviation from the unstrained lattice parameters yields the strain present in the film. For a biaxially stressed film with in-plane strain (ϵ∣∣) and out-of-plane strain ​(ϵ), the out-of-plane strain can be calculated using the measured out-of-plane lattice parameter a⊥​ through the following expression: \epsilon_\perp = \frac Assuming the film is isotropic, the in-plane strain can then be calculated using elasticity theory: \epsilon_\parallel = \frac \epsilon_\perp where \nu is the film's Poisson's ratio.


Raman Spectroscopy

Micro-Raman spectroscopy is often employed to noninvasively map strain states in monocrystalline thin films with high spatial resolution. Raman peak frequencies are sensitive to temperature, polarization, charge and defect density, as well as strain. Compressive strain typically blue shifts (increases) characteristic Raman peak frequencies while tensile strain results in redshift (decrease). Thickness-dependent strain can be directly calculated from shift magnitudes as long as the appropriate phonon frequency shift-strain coefficient (phonon deformation potential) is known and there are minimal variations in charge and defect density across the region of interest.


Transmission Electron Microscopy (TEM)

High resolution TEM (HRTEM) or scanning TEM (STEM) can be used to directly measure interplanar distances in crystalline materials. Diffraction methods such as nanobeam electron diffraction (NBED) measure reciprocal interplanar distances. These techniques can be leveraged in a TEM to measure crystal lattice strain in two dimensions. Comparison of these distances in strained and unstrained regions in a crystal yields the strain value. Geometric phase analysis (GPA), analyzes local variations in the Fourier components of lattice fringes to generate quantitative two dimensional strain maps from high resolution TEM lattice images with near-atomic resolution. Additionally, misfit dislocations and other strain-related defects can be directly imaged using diffraction contrast in TEM images. Higher-order Laue zone (HOLZ) features can be accurately measured using convergent beam electron diffraction. This technique constrains sample thickness and orientation, but it offers exceptional sensitivity, capable of measuring less than 0.1 picometer lattice parameter variation. This enables the determination of strain and texture orientation variation in individual grains of polycrystalline films.


Strain engineering

Stress and relaxation of stresses in films can influence the materials properties of the film, such as mass transport in
microelectronics Microelectronics is a subfield of electronics. As the name suggests, microelectronics relates to the study and manufacture (or microfabrication) of very small electronic designs and components. Usually, but not always, this means micrometre ...
applications. Therefore precautions are taken to either mitigate or produce such stresses; for example a buffer layer may be deposited between the substrate and film. Strain engineering is also used to produce various
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
and domain structures in thin films such as in the domain structure of the ferroelectric
Lead Zirconate Titanate Lead zirconate titanate, also called lead zirconium titanate and commonly abbreviated as PZT, is an inorganic compound with the chemical formula . It is a ceramic perovskite material that shows a marked piezoelectric effect, meaning that the comp ...
(PZT).


Multilayer medium

In the physical sciences, a multilayer or stratified medium is a stack of different thin films. Typically, a multilayer medium is made for a specific purpose. Since layers are thin with respect to some relevant length scale,
interface Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Inter ...
effects are much more important than in bulk materials, giving rise to novel physical properties. The term "multilayer" is ''not'' an extension of "
monolayer A monolayer is a single, closely packed layer of entities, commonly atoms or molecules. Monolayers can also be made out of cells. ''Self-assembled monolayers'' form spontaneously on surfaces. Monolayers of layered crystals like graphene and molyb ...
" and " bilayer", which describe a ''single'' layer that is one or two molecules thick. A multilayer medium rather consists of several thin films.


Examples

*An
optical coating An optical coating is one or more thin-film optics, thin layers of material deposited on an optical component such as a lens (optics), lens, prism (optics), prism or mirror, which alters the way in which the optic reflection (physics), reflects a ...
, as used for instance in a
dielectric mirror A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin film, thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type a ...
, is made of several layers that have different
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
es. *
Giant magnetoresistance Giant magnetoresistance (GMR) is a quantum mechanics, quantum mechanical magnetoresistance effect observed in multilayers composed of alternating ferromagnetic and non-magnetic conductive layers. The 2007 Nobel Prize in Physics was awarded to Alb ...
is a macroscopic quantum effect observed in alternating ferromagnetic and non-magnetic conductive layers.


Applications


Decorative coatings

The usage of thin films for decorative coatings probably represents their oldest application. This encompasses ca. 100 nm thin gold leaves that were already used in ancient India more than 5000 years ago. It may also be understood as any form of painting, although this kind of work is generally considered as an arts craft rather than an engineering or scientific discipline. Today, thin-film materials of variable thickness and high
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
like
titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or Colour Index Internationa ...
are often applied for decorative coatings on glass for instance, causing a rainbow-color appearance like oil on water. In addition, intransparent gold-colored surfaces may either be prepared by sputtering of gold or
titanium nitride Titanium nitride (TiN; sometimes known as tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface prop ...
.


Optical coatings

These layers serve in both reflective and
refractive In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
systems. Large-area (reflective)
mirror A mirror, also known as a looking glass, is an object that Reflection (physics), reflects an image. Light that bounces off a mirror forms an image of whatever is in front of it, which is then focused through the lens of the eye or a camera ...
s became available during the 19th century and were produced by sputtering of metallic silver or aluminum on glass. Refractive lenses for optical instruments like cameras and microscopes typically exhibit aberrations, i.e. non-ideal refractive behavior. While large sets of lenses had to be lined up along the optical path previously, nowadays, the coating of optical lenses with transparent multilayers of titanium dioxide,
silicon nitride Silicon nitride is a chemical compound of the elements silicon and nitrogen. (''Trisilicon tetranitride'') is the most thermodynamically stable and commercially important of the silicon nitrides, and the term ″''Silicon nitride''″ commonly re ...
or silicon oxide etc. may correct these aberrations. A well-known example for the progress in optical systems by thin-film technology is represented by the only a few mm wide lens in smart phone cameras. Other examples are given by anti-reflection coatings on eyeglasses or
solar panels A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct ...
.


Protective coatings

Thin films are often deposited to protect an underlying work piece from external influences. The protection may operate by minimizing the contact with the exterior medium in order to reduce the diffusion from the medium to the work piece or vice versa. For instance, plastic lemonade bottles are frequently coated by anti-diffusion layers to avoid the out-diffusion of , into which carbonic acid decomposes that was introduced into the beverage under high pressure. Another example is represented by thin
TiN Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
films in microelectronic chips separating electrically conducting aluminum lines from the embedding insulator in order to suppress the formation of . Often, thin films serve as protection against abrasion between mechanically moving parts. Examples for the latter application are
diamond-like carbon Diamond-like carbon (DLC) is a class of amorphous carbon material that displays some of the typical properties of diamond. DLC is usually applied as coatings to other materials that could benefit from such properties. DLC exists in seven dif ...
layers used in car engines or thin films made of
nanocomposite Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. In the ...
s.


Electrically operating coatings

Thin layers from elemental metals like copper, aluminum, gold or silver etc. and alloys have found numerous applications in electrical devices. Due to their high
electrical conductivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
they are able to transport electrical currents or supply voltages. Thin metal layers serve in conventional electrical system, for instance, as Cu layers on
printed circuit boards A printed circuit board (PCB), also called printed wiring board (PWB), is a laminated sandwich structure of conductive and insulating layers, each with a pattern of traces, planes and other features (similar to wires on a flat surface) ...
, as the outer ground conductor in
coaxial cable Coaxial cable, or coax (pronounced ), is a type of electrical cable consisting of an inner Electrical conductor, conductor surrounded by a concentric conducting Electromagnetic shielding, shield, with the two separated by a dielectric (Insulat ...
s and various other forms like sensors etc. A major field of application became their use in
integrated passive devices Integrated passive devices (IPDs), also known as integrated passive components (IPCs) or embedded passive components (EPC), are electronic components where resistors (R), capacitors (C), inductors (L)/coils/chokes, microstriplines, impedance matchi ...
and
integrated circuits An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
, where the electrical network among active and passive devices like
transistors A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
and capacitors etc. is built up from thin Al or Cu layers. These layers dispose of thicknesses in the range of a few 100 nm up to a few μm, and they are often embedded into a few nm thin
titanium nitride Titanium nitride (TiN; sometimes known as tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface prop ...
layers in order to block a chemical reaction with the surrounding dielectric like . The figure shows a micrograph of a laterally structured TiN/Al/TiN metal stack in a microelectronic chip.
Heterostructure A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in m ...
s of
gallium nitride Gallium nitride () is a binary III/ V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4  eV af ...
and similar
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s can lead to electrons being bound to a sub-nanometric layer, effectively behaving as a
two-dimensional electron gas A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an Fermi gas, electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels ...
. Quantum effects in such thin films can significantly enhance
electron mobility In solid-state physics, the electron mobility characterizes how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for Electron hole, holes, called hole mobilit ...
as compared to that of a bulk crystal, which is employed in
high-electron-mobility transistor A high-electron-mobility transistor (HEMT or HEM FET), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a field-effect transistor incorporating a junction between two materials with different band gaps (i.e. a heter ...
s.


Biosensors and plasmonic devices

Noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
thin films are used in plasmonic structures such as
surface plasmon resonance Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence (optics), angle of incidence, and then travel parallel to ...
(SPR) sensors.
Surface plasmon polariton Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible spectrum, visible-frequency. The term "surface plasmon polariton" explains that the ...
s are surface waves in the optical regime that propagate in between metal-dielectric interfaces; in Kretschmann-Raether configuration for the SPR sensors, a prism is coated with a metallic film through evaporation. Due to the poor adhesive characteristics of metallic films,
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
,
titanium Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
or
chromium Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal. Chromium ...
films are used as intermediate layers to promote stronger adhesion. Metallic thin films are also used in plasmonic waveguide designs.


Thin-film photovoltaic cells

Thin-film technologies are also being developed as a means of substantially reducing the cost of
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
. The rationale for this is
thin-film solar cell Thin-film solar cells are a type of solar cell made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nan ...
s are cheaper to manufacture owing to their reduced material costs, energy costs, handling costs and capital costs. This is especially represented in the use of
printed electronics Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure ...
(
roll-to-roll In the field of electronic devices, roll-to-roll processing, also known as web processing, reel-to-reel processing or R2R, is the process of creating electronic devices on a roll of flexible plastic, metal foil, or flexible glass. In other fields ...
) processes. Other thin-film technologies, that are still in an early stage of ongoing research or with limited commercial availability, are often classified as emerging or third generation photovoltaic cells and include, organic, dye-sensitized, and polymer solar cells, as well as
quantum dot Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic i ...
, copper zinc tin sulfide,
nanocrystal A nanocrystalline (NC) material is a polycrystalline material with a crystallite size of only a few nanometers. These materials fill the gap between amorphous materials without any long range order and conventional coarse-grained materials. De ...
and
perovskite solar cell A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such a ...
s.


Thin-film batteries

Thin-film printing technology is being used to apply solid-state lithium polymers to a variety of substrates to create unique batteries for specialized applications. Thin-film batteries can be deposited directly onto chips or chip packages in any shape or size. Flexible batteries can be made by printing onto plastic, thin metal foil, or paper.


Thin-film bulk acoustic wave resonators (TFBARs/FBARs)

For miniaturising and more precise control of resonance frequency of piezoelectric crystals thin-film bulk acoustic resonators TFBARs/FBARs are developed for oscillators, telecommunication filters and duplexers, and sensor applications.


See also

*
Coating A coating is a covering that is applied to the surface of an object, or substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. powder coatings. Paints ...
*
Dielectric mirror A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin film, thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type a ...
*
Dual-polarisation interferometry Dual-polarization interferometry (DPI) is an analytical technique that probes molecular layers adsorbed to the surface of a waveguide using the evanescent wave of a laser beam. It is used to measure the conformational change in proteins, or othe ...
*
Ellipsometry Ellipsometry is an optical technique for investigating the dielectric properties (complex refractive index or dielectric function) of thin films. Ellipsometry measures the change of polarization upon reflection or transmission and compares it ...
*
Flexible display A flexible display or rollable display is an electronic visual display which is flexible in nature, as opposed to the traditional Flat panel display, flat screen displays used in most electronic devices. In recent years there has been a growing ...
*
Flexible electronics Flexible electronics, also known as ''flex circuits'', is a technology for assembling electronic circuits by mounting electronic components on Flexibility, flexible plastic Substrate (materials science), substrates, such as polyimide, PEEK or ...
* Hydrogenography *
Kelvin probe force microscope Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlati ...
* Langmuir–Blodgett film * Layer by layer *
Microfabrication Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" ...
* Organic LED * SEEC microscopy *
Thin-film interference Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film Interference (wave propagation), interfere with one another, increasing reflection at some wavelengths and decreasing it ...
*
Thin-film optics Thin-film optics is the branch of optics that deals with very thin structured layers of different materials. In order to exhibit thin-film optics, the thickness of the layers of material must be similar to the coherence length; for visible ...
*
Thin-film solar cell Thin-film solar cells are a type of solar cell made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nan ...
* Thin-film bulk acoustic resonator *
Transfer-matrix method (optics) The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic wave, electromagnetic or acoustic waves through a stratified medium; a stack of thin films. This is, for example, relevant for the ...


References


Further reading

;Textbooks * * * ;Historical * {{Authority control Artificial materials Materials science Nanotechnology