
Meiosis (; , since it is a reductional division) is a special type of
cell division of
germ cells in
sexually-reproducing organisms that produces the
gametes, such as
sperm
Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm with a tail known as a flagellum, whi ...
or
egg cells. It involves two rounds of division that ultimately result in four cells with only one copy of each
chromosome (
haploid
Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively ...
). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is
crossed over, creating new combinations of code on each chromosome.
Later on, during
fertilisation
Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Proce ...
, the haploid cells produced by meiosis from a male and female will fuse to create a cell with two copies of each chromosome again, the
zygote.
Errors in meiosis resulting in
aneuploidy (an abnormal number of chromosomes) are the leading known cause of
miscarriage
Miscarriage, also known in medical terms as a spontaneous abortion and pregnancy loss, is the death of an embryo or fetus before it is able to survive independently. Miscarriage before 6 weeks of gestation is defined by ESHRE as biochemical lo ...
and the most frequent genetic cause of
developmental disabilities.
In meiosis,
DNA replication is followed by two rounds of cell division to produce four daughter cells, each with half the number of
chromosomes as the original parent cell.
The two meiotic divisions are known as
meiosis I and meiosis II. Before meiosis begins, during
S phase
S phase (Synthesis Phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during ...
of the
cell cycle, the DNA of each chromosome is replicated so that it consists of two identical
sister chromatids, which remain held together through sister chromatid cohesion. This S-phase can be referred to as "premeiotic S-phase" or "meiotic S-phase". Immediately following DNA replication, meiotic cells enter a prolonged
G2-like stage known as meiotic
prophase. During this time,
homologous chromosomes pair with each other and undergo
genetic recombination
Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryo ...
, a programmed process in which DNA may be cut and then repaired, which allows them to exchange some of their
genetic information. A subset of recombination events results in
crossovers, which create physical links known as
chiasmata (singular: chiasma, for the Greek letter
Chi (Χ)) between the homologous chromosomes. In most organisms, these links can help direct each pair of homologous chromosomes to
segregate away from each other during meiosis I, resulting in two
haploid
Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively ...
cells that have half the number of chromosomes as the parent cell.
During
meiosis II, the cohesion between sister chromatids is released and they segregate from one another, as during
mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
. In some cases, all four of the meiotic products form
gametes such as
sperm
Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm with a tail known as a flagellum, whi ...
,
spores or
pollen
Pollen is a powdery substance produced by seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametophyt ...
. In female animals, three of the four meiotic products are typically eliminated by
extrusion into
polar bodies, and only one cell develops to produce an
ovum
The egg cell, or ovum (plural ova), is the female reproductive cell, or gamete, in most anisogamous organisms (organisms that reproduce sexually with a larger, female gamete and a smaller, male one). The term is used when the female gamete is ...
. Because the number of chromosomes is halved during meiosis, gametes can fuse (i.e.
fertilization) to form a diploid
zygote that contains two copies of each chromosome, one from each parent. Thus, alternating cycles of meiosis and fertilization enable
sexual reproduction, with successive generations maintaining the same number of chromosomes. For example,
diploid
Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively ...
human
cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces
haploid
Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively ...
gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with the mother and father each contributing 23 chromosomes. This same pattern, but not the same number of chromosomes, occurs in all organisms that utilize meiosis.
Meiosis occurs in all sexually-reproducing single-celled and
multicellular organisms (which are all
eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s), including
animals,
plants and
fungi.
It is an essential process for
oogenesis
Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage.
O ...
and
spermatogenesis
Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubule ...
.
Overview
Although the process of meiosis is related to the more general cell division process of
mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
, it differs in two important respects:
Meiosis begins with a diploid cell, which contains two copies of each chromosome, termed
homologs. First, the cell undergoes
DNA replication, so each homolog now consists of two identical sister chromatids. Then each set of homologs pair with each other and exchange genetic information by
homologous recombination often leading to physical connections (
crossovers) between the homologs. In the first meiotic division, the homologs are segregated to separate daughter cells by the
spindle apparatus. The cells then proceed to a second division without an intervening round of DNA replication. The sister chromatids are segregated to separate daughter cells to produce a total of four haploid cells. Female animals employ a slight variation on this pattern and produce one large ovum and two small polar bodies. Because of recombination, an individual chromatid can consist of a new combination of maternal and paternal genetic information, resulting in offspring that are genetically distinct from either parent. Furthermore, an individual gamete can include an assortment of maternal, paternal, and recombinant chromatids. This genetic diversity resulting from sexual reproduction contributes to the variation in traits upon which
natural selection can act.
Meiosis uses many of the same mechanisms as
mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
, the type of cell division used by
eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s to divide one cell into two identical daughter cells. In some plants, fungi, and
protists meiosis results in the formation of
spore
In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, f ...
s: haploid cells that can divide vegetatively without undergoing fertilization. Some eukaryotes, like
bdelloid rotifers, do not have the ability to carry out meiosis and have acquired the ability to reproduce by
parthenogenesis.
Meiosis does not occur in
archaea
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
or
bacteria, which generally reproduce asexually via
binary fission. However, a "sexual" process known as
horizontal gene transfer involves the transfer of DNA from one bacterium or
archaeon to another and recombination of these DNA molecules of different parental origin.
History
Meiosis was discovered and described for the first time in
sea urchin
Sea urchins () are spiny, globular echinoderms in the class Echinoidea. About 950 species of sea urchin live on the seabed of every ocean and inhabit every depth zone from the intertidal seashore down to . The spherical, hard shells (tests) of ...
eggs in 1876 by the German biologist
Oscar Hertwig. It was described again in 1883, at the level of
chromosomes, by the Belgian zoologist
Edouard Van Beneden
Édouard Joseph Louis Marie Van Beneden (5 March 1846 in Leuven – 28 April 1910 in Liège), son of Pierre-Joseph Van Beneden, was a Belgian embryologist, cytologist and marine biologist. He was professor of zoology at the University of Liège ...
, in ''
Ascaris'' roundworm eggs. The significance of meiosis for reproduction and inheritance, however, was described only in 1890 by German biologist
August Weismann, who noted that two cell divisions were necessary to transform one diploid cell into four haploid cells if the number of chromosomes had to be maintained. In 1911, the
American
American(s) may refer to:
* American, something of, from, or related to the United States of America, commonly known as the "United States" or "America"
** Americans, citizens and nationals of the United States of America
** American ancestry, pe ...
geneticist
Thomas Hunt Morgan detected crossovers in meiosis in the fruit fly ''
Drosophila melanogaster'', which helped to establish that genetic traits are transmitted on chromosomes.
The term "meiosis" is derived from the Greek word , meaning 'lessening'. It was introduced to biology by
J.B. Farmer and
J.E.S. Moore in 1905, using the idiosyncratic rendering "maiosis":
''We propose to apply the terms Maiosis or Maiotic phase to cover the whole series of nuclear changes included in the two divisions that were designated as Heterotype and Homotype by Flemming''.
The spelling was changed to "meiosis" by Koernicke (1905) and by Pantel and De Sinety (1906) to follow the usual conventions for
transliterating Greek.
Phases
Meiosis is divided into
meiosis I and
meiosis II which are further divided into Karyokinesis I and Cytokinesis I and Karyokinesis II and Cytokinesis II respectively. The preparatory steps that lead up to meiosis are identical in pattern and name to interphase of the mitotic cell cycle.
Interphase is divided into three phases:
*
Growth 1 (G1) phase: In this very active phase, the cell synthesizes its vast array of proteins, including the enzymes and structural proteins it will need for growth. In G
1, each of the chromosomes consists of a single linear molecule of DNA.
*
Synthesis (S) phase: The genetic material is replicated; each of the cell's chromosomes duplicates to become two identical
sister chromatids attached at a centromere. This replication does not change the
ploidy
Ploidy () is the number of complete sets of chromosomes in a cell (biology), cell, and hence the number of possible alleles for Autosome, autosomal and Pseudoautosomal region, pseudoautosomal genes. Sets of chromosomes refer to the number of mat ...
of the cell since the centromere number remains the same. The identical sister chromatids have not yet condensed into the densely packaged chromosomes visible with the light microscope. This will take place during prophase I in meiosis.
*
Growth 2 (G2) phase: G
2 phase as seen before mitosis is not present in meiosis. Meiotic prophase corresponds most closely to the G
2 phase of the mitotic cell cycle.
Interphase is followed by meiosis I and then meiosis II. Meiosis I separates replicated homologous chromosomes, each still made up of two sister chromatids, into two daughter cells, thus reducing the chromosome number by half. During meiosis II, sister chromatids decouple and the resultant daughter chromosomes are segregated into four daughter cells. For diploid organisms, the daughter cells resulting from meiosis are haploid and contain only one copy of each chromosome. In some species, cells enter a resting phase known as
interkinesis
Interkinesis or interphase II is a period of rest that cells of some species enter during meiosis between meiosis I and meiosis II. No DNA replication occurs during interkinesis; however, replication does occur during the interphase I stage of mei ...
between meiosis I and meiosis II.
Meiosis I and II are each divided into
prophase,
metaphase,
anaphase, and
telophase stages, similar in purpose to their analogous subphases in the mitotic cell cycle. Therefore, meiosis includes the stages of meiosis I (prophase I, metaphase I, anaphase I, telophase I) and meiosis II (prophase II, metaphase II, anaphase II, telophase II).
During meiosis, specific genes are more highly
transcribed. In addition to strong meiotic stage-specific expression of
mRNA, there are also pervasive translational controls (e.g. selective usage of preformed mRNA), regulating the ultimate meiotic stage-specific protein expression of genes during meiosis.
Thus, both transcriptional and translational controls determine the broad restructuring of meiotic cells needed to carry out meiosis.
Meiosis I
Meiosis I segregates
homologous chromosomes, which are joined as tetrads (2n, 4c), producing two haploid cells (n chromosomes, 23 in humans) which each contain chromatid pairs (1n, 2c). Because the ploidy is reduced from diploid to haploid, meiosis I is referred to as a ''reductional division''. Meiosis II is an ''equational division'' analogous to mitosis, in which the sister chromatids are segregated, creating four haploid daughter cells (1n, 1c).
Prophase I
Prophase I is by far the longest phase of meiosis (lasting 13 out of 14 days in mice). During prophase I, homologous maternal and paternal chromosomes pair,
synapse
In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell.
Synapses are essential to the transmission of nervous impulses from ...
, and exchange genetic information (by
homologous recombination), forming at least one crossover per chromosome. These crossovers become visible as chiasmata (plural; singular
chiasma).
This process facilitates stable pairing between homologous chromosomes and hence enables accurate segregation of the chromosomes at the first meiotic division. The paired and replicated chromosomes are called bivalents (two chromosomes) or tetrads (four
chromatids), with one chromosome coming from each parent. Prophase I is divided into a series of substages which are named according to the appearance of chromosomes.
= Leptotene
=
The first stage of prophase I is the ''leptotene'' stage, also known as ''leptonema'', from Greek words meaning "thin threads".
In this stage of prophase I, individual chromosomes—each consisting of two replicated sister chromatids—become "individualized" to form visible strands within the nucleus.
The chromosomes each form a linear array of loops mediated by
cohesin, and the lateral elements of the
synaptonemal complex
The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during meiosis I in eukaryotes. It is currentl ...
assemble forming an "axial element" from which the loops emanate.
Recombination is initiated in this stage by the enzyme
SPO11
Spo11 is a protein that in humans is encoded by the ''SPO11'' gene. Spo11, in a complex with mTopVIB, creates double strand breaks to initiate meiotic recombination. Its active site contains a tyrosine which ligates and dissociates with DNA to pr ...
which creates programmed
double strand breaks
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA da ...
(around 300 per meiosis in mice). This process generates single stranded DNA filaments coated by
RAD51
DNA repair protein RAD51 homolog 1 is a protein encoded by the gene ''RAD51''. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to th ...
and
DMC1 which invade the homologous chromosomes, forming inter-axis bridges, and resulting in the pairing/co-alignment of homologues (to a distance of ~400 nm in mice).
=Zygotene
=
Leptotene is followed by the ''zygotene'' stage, also known as ''zygonema'', from Greek words meaning "paired threads",
which in some organisms is also called the bouquet stage because of the way the telomeres cluster at one end of the nucleus. In this stage the homologous chromosomes become much more closely (~100 nm) and stably paired (a process called synapsis) mediated by the installation of the transverse and central elements of the
synaptonemal complex
The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during meiosis I in eukaryotes. It is currentl ...
.
Synapsis is thought to occur in a zipper-like fashion starting from a recombination nodule. The paired chromosomes are called bivalent or tetrad chromosomes.
=Pachytene
=
The ''pachytene'' stage ( ), also known as ''pachynema'', from Greek words meaning "thick threads".
is the stage at which all autosomal chromosomes have synapsed. In this stage homologous recombination, including chromosomal crossover (crossing over), is completed through the repair of the double strand breaks formed in leptotene.
Most breaks are repaired without forming crossovers resulting in
gene conversion. However, a subset of breaks (at least one per chromosome) form crossovers between non-sister (homologous) chromosomes resulting in the exchange of genetic information.
Sex chromosomes, however, are not wholly identical, and only exchange information over a small region of homology called the
pseudoautosomal region. The exchange of information between the homologous chromatids results in a recombination of information; each chromosome has the complete set of information it had before, and there are no gaps formed as a result of the process. Because the chromosomes cannot be distinguished in the synaptonemal complex, the actual act of crossing over is not perceivable through an ordinary light microscope, and chiasmata are not visible until the next stage.
=Diplotene
=
During the ''diplotene'' stage, also known as ''diplonema'', from Greek words meaning "two threads",
the
synaptonemal complex
The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during meiosis I in eukaryotes. It is currentl ...
disassembles and homologous chromosomes separate from one another a little. However, the homologous chromosomes of each bivalent remain tightly bound at chiasmata, the regions where crossing-over occurred. The chiasmata remain on the chromosomes until they are severed at the transition to anaphase I to allow homologous chromosomes to move to opposite poles of the cell.
In human fetal
oogenesis
Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage.
O ...
, all developing oocytes develop to this stage and are arrested in prophase I before birth. This suspended state is referred to as the
''dictyotene stage'' or dictyate. It lasts until meiosis is resumed to prepare the oocyte for ovulation, which happens at puberty or even later.
=Diakinesis
=
Chromosomes condense further during the ''diakinesis'' stage, from Greek words meaning "moving through".
This is the first point in meiosis where the four parts of the tetrads are actually visible. Sites of crossing over entangle together, effectively overlapping, making chiasmata clearly visible. Other than this observation, the rest of the stage closely resembles
prometaphase of mitosis; the
nucleoli disappear, the
nuclear membrane disintegrates into vesicles, and the
meiotic spindle begins to form.
=Meiotic spindle formation
=
Unlike mitotic cells, human and mouse oocytes do not have
centrosomes to produce the meiotic spindle. In mice, approximately 80 MicroTubule Organizing Centers (MTOCs) form a sphere in the ooplasm and begin to nucleate microtubules that reach out towards chromosomes, attaching to the chromosomes at the
kinetochore. Over time the MTOCs merge until two poles have formed, generating a barrel shaped spindle. In human oocytes spindle microtubule nucleation begins on the chromosomes, forming an aster that eventually expands to surround the chromosomes. Chromosomes then slide along the microtubules towards the equator of the spindle, at which point the chromosome kinetochores form end-on attachments to microtubules.
Metaphase I
Homologous pairs move together along the metaphase plate: As ''kinetochore microtubules'' from both spindle poles attach to their respective kinetochores, the paired homologous chromosomes align along an equatorial plane that bisects the spindle, due to continuous counterbalancing forces exerted on the bivalents by the microtubules emanating from the two kinetochores of homologous chromosomes. This attachment is referred to as a bipolar attachment. The physical basis of the
independent assortment
Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularize ...
of chromosomes is the random orientation of each bivalent along with the metaphase plate, with respect to the orientation of the other bivalents along the same equatorial line.
The protein complex
cohesin holds sister chromatids together from the time of their replication until anaphase. In mitosis, the force of kinetochore microtubules pulling in opposite directions creates tension. The cell senses this tension and does not progress with anaphase until all the chromosomes are properly bi-oriented. In meiosis, establishing tension ordinarily requires at least one crossover per chromosome pair in addition to cohesin between sister chromatids (see
Chromosome segregation).
Anaphase I
Kinetochore microtubules shorten, pulling homologous chromosomes (which each consist of a pair of sister chromatids) to opposite poles. Nonkinetochore microtubules lengthen, pushing the centrosomes farther apart. The cell elongates in preparation for division down the center.
Unlike in mitosis, only the cohesin from the chromosome arms is degraded while the cohesin surrounding the centromere remains protected by a protein named Shugoshin (Japanese for "guardian spirit"), what prevents the sister chromatids from separating.
[Pierce, Benjamin (2009). «Chromosomes and Cell Reproduction». Genetics: A Conceptual Approach, Third Edition. W.H. FREEMAN AND CO. P. 32] This allows the sister chromatids to remain together while homologs are segregated.
Telophase I
The first meiotic division effectively ends when the chromosomes arrive at the poles. Each daughter cell now has half the number of chromosomes but each chromosome consists of a pair of chromatids. The microtubules that make up the spindle network disappear, and a new nuclear membrane surrounds each haploid set. The chromosomes uncoil back into chromatin. Cytokinesis, the pinching of the cell membrane in animal cells or the formation of the cell wall in plant cells, occurs, completing the creation of two daughter cells. However, cytokinesis does not fully complete resulting in "cytoplasmic bridges" which enable the cytoplasm to be shared between daughter cells until the end of meiosis II. Sister chromatids remain attached during telophase I.
Cells may enter a period of rest known as
interkinesis
Interkinesis or interphase II is a period of rest that cells of some species enter during meiosis between meiosis I and meiosis II. No DNA replication occurs during interkinesis; however, replication does occur during the interphase I stage of mei ...
or interphase II. No DNA replication occurs during this stage.
Meiosis II
Meiosis II is the second meiotic division, and usually involves equational segregation, or separation of sister chromatids. Mechanically, the process is similar to mitosis, though its genetic results are fundamentally different. The end result is production of four haploid cells (n chromosomes, 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) produced in meiosis I. The four main steps of meiosis II are: prophase II, metaphase II, anaphase II, and telophase II.
In prophase II, we see the disappearance of the nucleoli and the
nuclear envelope
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membrane ...
again as well as the shortening and thickening of the chromatids. Centrosomes move to the polar regions and arrange spindle fibers for the second meiotic division.
In metaphase II, the centromeres contain two kinetochores that attach to spindle fibers from the centrosomes at opposite poles. The new equatorial metaphase plate is rotated by 90 degrees when compared to meiosis I, perpendicular to the previous plate.
This is followed by anaphase II, in which the remaining centromeric cohesin, not protected by Shugoshin anymore, is cleaved, allowing the sister chromatids to segregate. The sister chromatids by convention are now called sister chromosomes as they move toward opposing poles.
The process ends with telophase II, which is similar to telophase I, and is marked by decondensation and lengthening of the chromosomes and the disassembly of the spindle. Nuclear envelopes re-form and cleavage or cell plate formation eventually produces a total of four daughter cells, each with a haploid set of chromosomes.
Meiosis is now complete and ends up with four new daughter cells.
Origin and function
The new combinations of DNA created during meiosis are a significant source of
genetic variation
Genetic variation is the difference in DNA among individuals or the differences between populations. The multiple sources of genetic variation include mutation and genetic recombination. Mutations are the ultimate sources of genetic variation, ...
alongside mutation, resulting in new combinations of
alleles, which may be beneficial. Meiosis generates gamete genetic diversity in two ways: (1)
Law of Independent Assortment. The independent orientation of homologous chromosome pairs along the metaphase plate during metaphase I and orientation of sister chromatids in metaphase II, this is the subsequent separation of homologs and sister chromatids during anaphase I and II, it allows a random and independent distribution of chromosomes to each daughter cell (and ultimately to gametes); and (2)
Crossing Over. The physical exchange of homologous chromosomal regions by homologous
recombination during prophase I results in new combinations of genetic information within chromosomes.
Prophase I arrest
Female mammals and birds are born possessing all the oocytes needed for future ovulations, and these
oocytes are arrested at the prophase I stage of meiosis.
In humans, as an example, oocytes are formed between three and four months of
gestation
Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pregna ...
within the fetus and are therefore present at birth. During this prophase I arrested stage (
dictyate), which may last for decades, four copies of the
genome are present in the oocytes. The arrest of ooctyes at the four genome copy stage was proposed to provide the informational redundancy needed to
repair damage in the DNA of the
germline
In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
.
[ The repair process used appears to involve homologous recombinational repair] Prophase I arrested oocytes have a high capability for efficient repair of DNA damages, particularly exogenously induced double-strand breaks.[ DNA repair capability appears to be a key quality control mechanism in the female germ line and a critical determinant of fertility.][
]
Occurrence
In life cycles
Meiosis occurs in eukaryotic life cycles involving sexual reproduction, consisting of the constant cyclical process of meiosis and fertilization. This takes place alongside normal mitotic cell division. In multicellular organisms, there is an intermediary step between the diploid and haploid transition where the organism grows. At certain stages of the life cycle, germ cells produce gametes. Somatic cell
A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells compo ...
s make up the body of the organism and are not involved in gamete production.
Cycling meiosis and fertilization events produces a series of transitions back and forth between alternating haploid and diploid states. The organism phase of the life cycle can occur either during the diploid state (''diplontic'' life cycle), during the haploid state (''haplontic'' life cycle), or both (''haplodiplontic'' life cycle, in which there are two distinct organism phases, one during the haploid state and the other during the diploid state). In this sense there are three types of life cycles that utilize sexual reproduction, differentiated by the location of the organism phase(s).
In the ''diplontic life cycle'' (with pre-gametic meiosis), of which humans are a part, the organism is diploid, grown from a diploid cell called the zygote. The organism's diploid germ-line stem cells undergo meiosis to create haploid gametes (the spermatozoa for males and ova for females), which fertilize to form the zygote. The diploid zygote undergoes repeated cellular division by mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
to grow into the organism.
In the ''haplontic life cycle'' (with post-zygotic meiosis), the organism is haploid instead, spawned by the proliferation and differentiation of a single haploid cell called the gamete. Two organisms of opposing sex contribute their haploid gametes to form a diploid zygote. The zygote undergoes meiosis immediately, creating four haploid cells. These cells undergo mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
to create the organism. Many fungi and many protozoa
Protozoa (singular: protozoan or protozoon; alternative plural: protozoans) are a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Histo ...
utilize the haplontic life cycle.
Finally, in the ''haplodiplontic life cycle'' (with sporic or intermediate meiosis), the living organism alternates between haploid and diploid states. Consequently, this cycle is also known as the alternation of generations
Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of Biological life cycle, life cycle in plants and algae. It consists of a Multicellular organism, multicellular haploid sexual phase, the gametophy ...
. The diploid organism's germ-line cells undergo meiosis to produce spores. The spores proliferate by mitosis, growing into a haploid organism. The haploid organism's gamete then combines with another haploid organism's gamete, creating the zygote. The zygote undergoes repeated mitosis and differentiation to become a diploid organism again. The haplodiplontic life cycle can be considered a fusion of the diplontic and haplontic life cycles.
In plants and animals
Meiosis occurs in all animals and plants. The end result, the production of gametes with half the number of chromosomes as the parent cell, is the same, but the detailed process is different. In animals, meiosis produces gametes directly. In land plants and some algae, there is an alternation of generations
Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of Biological life cycle, life cycle in plants and algae. It consists of a Multicellular organism, multicellular haploid sexual phase, the gametophy ...
such that meiosis in the diploid sporophyte
A sporophyte () is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.
Life cycle
The sporophyte develops from the zygote pr ...
generation produces haploid spores. These spores multiply by mitosis, developing into the haploid gametophyte generation, which then gives rise to gametes directly (i.e. without further meiosis). In both animals and plants, the final stage is for the gametes to fuse, restoring the original number of chromosomes.
In mammals
In females, meiosis occurs in cells known as oocytes (singular: oocyte). Each primary oocyte divides twice in meiosis, unequally in each case. The first division produces a daughter cell, and a much smaller polar body which may or may not undergo a second division. In meiosis II, division of the daughter cell produces a second polar body, and a single haploid cell, which enlarges to become an ovum
The egg cell, or ovum (plural ova), is the female reproductive cell, or gamete, in most anisogamous organisms (organisms that reproduce sexually with a larger, female gamete and a smaller, male one). The term is used when the female gamete is ...
. Therefore, in females each primary oocyte that undergoes meiosis results in one mature ovum and one or two polar bodies.
Note that there are pauses during meiosis in females. Maturing oocytes are arrested in prophase I of meiosis I and lie dormant within a protective shell of somatic cells called the follicle. At the beginning of each menstrual cycle
The menstrual cycle is a series of natural changes in hormone production and the structures of the uterus and ovaries of the female reproductive system that make pregnancy possible. The ovarian cycle controls the production and release of eggs a ...
, FSH secretion from the anterior pituitary stimulates a few follicles to mature in a process known as folliculogenesis. During this process, the maturing oocytes resume meiosis and continue until metaphase II of meiosis II, where they are again arrested just before ovulation. If these oocytes are fertilized by sperm, they will resume and complete meiosis. During folliculogenesis in humans, usually one follicle becomes dominant while the others undergo atresia
Atresia is a condition in which an orifice or passage in the body is (usually abnormally) closed or absent.
Examples of atresia include:
*Aural atresia, a congenital deformity where the ear canal is underdeveloped.
* Biliary atresia, a condition ...
. The process of meiosis in females occurs during oogenesis
Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage.
O ...
, and differs from the typical meiosis in that it features a long period of meiotic arrest known as the dictyate stage and lacks the assistance of centrosomes.
In males, meiosis occurs during spermatogenesis
Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubule ...
in the seminiferous tubules of the testicles. Meiosis during spermatogenesis is specific to a type of cell called spermatocytes, which will later mature to become spermatozoa. Meiosis of primordial germ cells happens at the time of puberty, much later than in females. Tissues of the male testis suppress meiosis by degrading retinoic acid, proposed to be a stimulator of meiosis. This is overcome at puberty when cells within seminiferous tubules called Sertoli cells start making their own retinoic acid. Sensitivity to retinoic acid is also adjusted by proteins called nanos and DAZL. Genetic loss-of-function studies on retinoic acid-generating enzymes have shown that retinoic acid is required postnatally to stimulate spermatogonia differentiation which results several days later in spermatocytes undergoing meiosis, however retinoic acid is not required during the time when meiosis initiates.
In female mammals, meiosis begins immediately after primordial germ cells migrate to the ovary in the embryo. Some studies suggest that retinoic acid derived from the primitive kidney (mesonephros) stimulates meiosis in embryonic ovarian oogonia and that tissues of the embryonic male testis suppress meiosis by degrading retinoic acid. However, genetic loss-of-function studies on retinoic acid-generating enzymes have shown that retinoic acid is not required for initiation of either female meiosis which occurs during embryogenesis or male meiosis which initiates postnatally.
Flagellates
While the majority of eukaryotes have a two-divisional meiosis (though sometimes achiasmatic), a very rare form, one-divisional meiosis, occurs in some flagellates ( parabasalids and oxymonads) from the gut of the wood-feeding cockroach '' Cryptocercus''.
Role in human genetics and disease
Recombination among the 23 pairs of human chromosomes is responsible for redistributing not just the actual chromosomes, but also pieces of each of them. There is also an estimated 1.6-fold more recombination in females relative to males. In addition, average, female recombination is higher at the centromeres and male recombination is higher at the telomeres. On average, 1 million bp (1 Mb) correspond to 1 cMorgan (cm = 1% recombination frequency). The frequency of cross-overs remain uncertain. In yeast, mouse and human, it has been estimated that ≥200 double-strand breaks (DSBs) are formed per meiotic cell. However, only a subset of DSBs (~5–30% depending on the organism), go on to produce crossovers, which would result in only 1-2 cross-overs per human chromosome.
Nondisjunction
The normal separation of chromosomes in meiosis I or sister chromatids in meiosis II is termed ''disjunction''. When the segregation is not normal, it is called ''nondisjunction''. This results in the production of gametes which have either too many or too few of a particular chromosome, and is a common mechanism for trisomy or monosomy. Nondisjunction can occur in the meiosis I or meiosis II, phases of cellular reproduction, or during mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
.
Most monosomic and trisomic human embryos are not viable, but some aneuploidies can be tolerated, such as trisomy for the smallest chromosome, chromosome 21. Phenotypes of these aneuploidies range from severe developmental disorders to asymptomatic. Medical conditions include but are not limited to:
* Down syndrome – trisomy of chromosome 21
* Patau syndrome – trisomy of chromosome 13
* Edwards syndrome – trisomy of chromosome 18
* Klinefelter syndrome – extra X chromosomes in males – i.e. XXY, XXXY, XXXXY, etc.
* Turner syndrome – lacking of one X chromosome in females – i.e. X0
* Triple X syndrome – an extra X chromosome in females
* Jacobs syndrome
XYY syndrome, also known as Jacobs syndrome, is an aneuploid genetic condition in which a male has an extra Y chromosome. There are usually few symptoms. These may include being taller than average, acne, and an increased risk of learning disab ...
– an extra Y chromosome in males.
The probability of nondisjunction in human oocytes increases with increasing maternal age, presumably due to loss of cohesin over time.
Comparison to mitosis
In order to understand meiosis, a comparison to mitosis is helpful. The table below shows the differences between meiosis and mitosis.
Molecular regulation
How a cell proceeds to meiotic division in meiotic cell division is not well known. Maturation promoting factor (MPF) seemingly have role in frog Oocyte meiosis. In the fungus ''S. pombe''. there is a role of MeiRNA binding protein for entry to meiotic cell division.
It has been suggested that Yeast CEP1 gene product, that binds centromeric region CDE1, may play a role in chromosome pairing during meiosis-I.
Meiotic recombination is mediated through double stranded break, which is catalyzed by Spo11 protein. Also Mre11, Sae2 and Exo1 play role in breakage and recombination. After the breakage happen, recombination take place which is typically homologous. The recombination may go through either a double Holliday junction (dHJ) pathway or synthesis-dependent strand annealing (SDSA). (The second one gives to noncrossover product).
Seemingly there are checkpoints for meiotic cell division too. In S. pombe, Rad proteins, S. pombe Mek1 (with FHA kinase domain), Cdc25, Cdc2 and unknown factor is thought to form a checkpoint.
In vertebrate oogenesis, maintained by cytostatic factor (CSF) has role in switching into meiosis-II.
See also
*Fertilisation
Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Proce ...
*Coefficient of coincidence
In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the lik ...
* DNA repair
* Oxidative stress
*Synizesis (biology) Synizesis refers to a phenomenon sometimes observed in one of the subphases of meiosis. This phenomenon, sometimes referred to as a "synizetic knot", and contrasted with the chromosome "bouquet" more typically observed, is characterized by the local ...
*Biological life cycle
In biology, a biological life cycle (or just life cycle or lifecycle when the biological context is clear) is a series of changes in form that an organism undergoes, returning to the starting state. "The concept is closely related to those of the ...
*Apomixis
In botany, apomixis is asexual reproduction without fertilization. Its etymology is Greek for "away from" + "mixing". This definition notably does not mention meiosis. Thus "normal asexual reproduction" of plants, such as propagation from cuttin ...
* Parthenogenesis
*Alternation of generations
Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of Biological life cycle, life cycle in plants and algae. It consists of a Multicellular organism, multicellular haploid sexual phase, the gametophy ...
*Brachymeiosis Brachymeiosis was a hypothesized irregularity in the sexual reproduction of ascomycete fungi, a variant of meiosis following an "extra" karyogamy (nuclear fusion) step. The hypothesized process would have transformed four diploid nuclei into eigh ...
* Mitotic recombination
* Dikaryon
* Mating of yeast
References
Cited texts
*
External links
Meiosis Flash Animation
Khan Academy, video lecture
CCO
The Cell-Cycle Ontology
Stages of Meiosis animation
*
"Abby Dernburg Seminar: Chromosome Dynamics During Meiosis"
{{Authority control
Cellular processes
Cell cycle
Molecular genetics
Plant sexuality
Articles containing video clips
1876 in science