HOME

TheInfoList



OR:

The carbon group is a
periodic table group In chemistry, a group (also known as a family) is a column of elements in the periodic table of the chemical elements. There are 18 numbered groups in the periodic table; the f-block columns (between groups 2 and 3) are not numbered. The elemen ...
consisting of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes ...
(C),
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
(Si),
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbo ...
(Ge), tin (Sn),
lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale of mineral hardness#Intermediate ...
(Pb), and flerovium (Fl). It lies within the p-block. In modern
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
notation, it is called group 14. In the field of
semiconductor physics A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
, it is still universally called group IV. The group was once also known as the tetrels (from the Greek word ''tetra'', which means four), stemming from the Roman numeral IV in the group names, or (not coincidentally) from the fact that these elements have four
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair f ...
s (see below). They are also known as the crystallogens or adamantogens.


Characteristics


Chemical

Like other groups, the members of this family show patterns in
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon at ...
, especially in the outermost shells, resulting in trends in chemical behavior: Each of the
elements Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of ...
in this group has 4
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary partic ...
s in its outer shell. An isolated, neutral group 14 atom has the s2 p2 configuration in the ground state. These elements, especially
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes ...
and
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
, have a strong propensity for covalent bonding, which usually brings the outer shell to eight electrons. Bonds in these elements often lead to hybridisation where distinct s and p characters of the orbitals are erased. For single bonds, a typical arrangement has four pairs of sp3 electrons, although other cases exist too, such as three sp2 pairs in
graphene Graphene () is an allotrope of carbon consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice nanostructure.
and graphite. Double bonds are characteristic for carbon (
alkene In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic, an ...
s, ...); the same for π-systems in general. The tendency to lose electrons increases as the size of the
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
increases, as it does with increasing atomic number. Carbon alone forms negative ions, in the form of
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
(C4−) ions. Silicon and
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbo ...
, both metalloids, each can form +4 ions. Tin and
lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale of mineral hardness#Intermediate ...
both are
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
s, while flerovium is a synthetic,
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
(its half life is very short, only 1.9 seconds) element that may have a few
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low che ...
-like properties, though it is still most likely a post-transition metal. Tin and lead are both capable of forming +2 ions. Although tin is chemically a metal, its α allotrope looks more like germanium than like a metal and it is a poor electric conductor. Carbon forms tetrahalides with all the halogens. Carbon also forms many oxides such as
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
,
carbon suboxide Carbon suboxide, or tricarbon dioxide, is an organic, oxygen-containing chemical compound with formula and structure . Its four cumulative double bonds make it a cumulene. It is one of the stable members of the series of linear oxocarbons , ...
, and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
. Carbon forms disulfides and diselenides. Silicon forms several hydrides; two of them are SiH4 and Si2H6. Silicon forms tetrahalides with fluorine, chlorine, bromine, and iodine. Silicon also forms a dioxide and a disulfide. Silicon nitride has the formula Si3N4. Germanium forms five hydrides. The first two germanium hydrides are GeH4 and Ge2H6. Germanium forms tetrahalides with all halogens except astatine and forms dihalides with all halogens except bromine and astatine. Germanium bonds to all natural single chalcogens except polonium, and forms dioxides, disulfides, and diselenides. Germanium nitride has the formula Ge3N4. Tin forms two hydrides: SnH4 and Sn2H6. Tin forms dihalides and tetrahalides with all halogens except astatine. Tin forms chalcogenides with one of each naturally occurring chalcogen except polonium, and forms chalcogenides with two of each naturally occurring chalcogen except polonium and tellurium. Lead forms one hydride, which has the formula PbH4. Lead forms dihalides and tetrahalides with fluorine and chlorine, and forms a dibromide and diiodide, although the tetrabromide and tetraiodide of lead are unstable. Lead forms four oxides, a sulfide, a selenide, and a telluride. There are no known compounds of flerovium.


Physical

The boiling points of the carbon group tend to get lower with the heavier elements. Carbon, the lightest carbon group element,
sublimes Sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. Sublimation is an endothermic process that occurs at temperatures and pressures below a substance's triple point i ...
at 3825 °C. Silicon's boiling point is 3265 °C, germanium's is 2833 °C, tin's is 2602 °C, and lead's is 1749 °C. Flerovium is predicted boil in -60 °C. Archived a
Ghostarchive
and th
Wayback Machine
The
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends ...
s of the carbon group elements have roughly the same trend as their boiling points. Silicon melts at 1414 °C, germanium melts at 939 °C, tin melts at 232 °C, and lead melts at 328 °C. Carbon's crystal structure is hexagonal; at high pressures and temperatures it forms
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
(see below). Silicon and germanium have diamond cubic crystal structures, as does tin at low temperatures (below 13.2 °C). Tin at room temperature has a
tetragonal In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a squar ...
crystal structure. Lead has a
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
crystal structure. The densities of the carbon group elements tend to increase with increasing atomic number. Carbon has a density of 2.26 grams per cubic centimeter, silicon has a density of 2.33 grams per cubic centimeter, germanium has a density of 5.32 grams per cubic centimeter. Tin has a density of 7.26 grams per cubic centimeter, and lead has a density of 11.3 grams per cubic centimeter. The atomic radii of the carbon group elements tend to increase with increasing atomic number. Carbon's atomic radius is 77 picometers, silicon's is 118 picometers, germanium's is 123 picometers, tin's is 141 picometers, and lead's is 175 picometers.


Allotropes

Carbon has multiple allotropes. The most common is
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on la ...
, which is carbon in the form of stacked sheets. Another form of carbon is
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
, but this is relatively rare. Amorphous carbon is a third allotrope of carbon; it is a component of
soot Soot ( ) is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. It is more properly restricted to the product of the gas-phase combustion process but is commonly extended to include the residual pyrolyse ...
. Another allotrope of carbon is a
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
, which has the form of sheets of carbon atoms folded into a sphere. A fifth allotrope of carbon, discovered in 2003, is called
graphene Graphene () is an allotrope of carbon consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice nanostructure.
, and is in the form of a layer of carbon atoms arranged in a honeycomb-shaped formation. Silicon has two known allotropes that exist at room temperature. These allotropes are known as the amorphous and the crystalline allotropes. The amorphous allotrope is a brown powder. The crystalline allotrope is gray and has a metallic Lustre (mineralogy), luster. Tin has two allotropes: α-tin, also known as gray tin, and β-tin. Tin is typically found in the β-tin form, a silvery metal. However, at standard pressure, β-tin converts to α-tin, a gray powder, at temperatures below 13.2° Celsius/56° Fahrenheit. This can cause tin objects in cold temperatures to crumble to gray powder in a process known as tin pest or tin rot.


Nuclear

At least two of the carbon group elements (tin and lead) have magic nuclei, meaning that these elements are more common and more stable than elements that do not have a magic nucleus.


Isotopes

There are 15 known isotopes of carbon. Of these, three are naturally occurring. The most common is stable carbon-12, followed by stable carbon-13. Carbon-14 is a natural radioactive isotope with a half-life of 5,730 years. 23 isotopes of silicon have been discovered. Five of these are naturally occurring. The most common is stable silicon-28, followed by stable silicon-29 and stable silicon-30. Silicon-32 is a radioactive isotope that occurs naturally as a result of radioactive decay of actinides, and via spallation in the upper atmosphere. Silicon-34 also occurs naturally as the result of radioactive decay of actinides. 32 isotopes of germanium have been discovered. Five of these are naturally occurring. The most common is the stable isotope germanium-74, followed by the stable isotope germanium-72, the stable isotope germanium-70, and the stable isotope germanium-73. The isotope germanium-76 is a primordial radioisotope. 40 isotopes of tin have been discovered. 14 of these occur in nature. The most common is tin-120, followed by tin-118, tin-116, tin-119, tin-117, tin-124, tin-122, tin-112, and tin-114: all of these are stable. Tin also has four radioisotopes that occur as the result of the radioactive decay of uranium. These isotopes are tin-121, tin-123, tin-125, and tin-126. 38 isotopes of lead have been discovered. 9 of these are naturally occurring. The most common isotope is lead-208, followed by lead-206, lead-207, and lead-204: all of these are stable. 4 isotopes of lead occur from the radioactive decay of uranium and thorium. These isotopes are lead-209, lead-210, lead-211, and lead-212. 6 isotopes of flerovium (flerovium-284, flerovium-285, flerovium-286, flerovium-287, flerovium-288, and flerovium-289) have been discovered. None of these are naturally occurring. Flerovium's most stable isotope is flerovium-289, which has a half-life of 2.6 seconds.


Occurrence

Carbon accumulates as the result of
stellar fusion Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. ...
in most stars, even small ones. Carbon is present in the earth's crust in concentrations of 480 parts per million, and is present in
seawater Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appr ...
at concentrations of 28 parts per million. Carbon is present in the atmosphere in the form of
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
,
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
, and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ear ...
. Carbon is a key constituent of
carbonate minerals Carbonate minerals are those minerals containing the carbonate ion, . Carbonate divisions Anhydrous carbonates *Calcite group: trigonal **Calcite CaCO3 **Gaspéite (Ni,Mg,Fe2+)CO3 **Magnesite MgCO3 **Otavite CdCO3 **Rhodochrosite MnCO3 **Sider ...
, and is in
hydrogen carbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial biochemica ...
, which is common in seawater. Carbon forms 22.8% of a typical human. Silicon is present in the earth's crust at concentrations of 28%, making it the second most abundant element there. Silicon's concentration in seawater can vary from 30 parts per billion on the surface of the ocean to 2000 parts per billion deeper down. Silicon dust occurs in trace amounts in earth's atmosphere.
Silicate minerals Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually cons ...
are the most common type of mineral on earth. Silicon makes up 14.3 parts per million of the human body on average. Only the largest stars produce silicon via stellar fusion. Germanium makes up 2 parts per million of the earth's crust, making it the 52nd most abundant element there. On average, germanium makes up 1 part per million of
soil Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former ...
. Germanium makes up 0.5 parts per trillion of seawater. Organogermanium compounds are also found in seawater. Germanium occurs in the human body at concentrations of 71.4 parts per billion. Germanium has been found to exist in some very faraway stars. Tin makes up 2 parts per million of the earth's crust, making it the 49th most abundant element there. On average, tin makes up 1 part per million of soil. Tin exists in seawater at concentrations of 4 parts per trillion. Tin makes up 428 parts per billion of the human body.
Tin(IV) oxide Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in ...
occurs at concentrations of 0.1 to 300 parts per million in soils. Tin also occurs in concentrations of one part per thousand in
igneous rock Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or l ...
s. Lead makes up 14 parts per million of the earth's crust, making it the 36th most abundant element there. On average, lead makes up 23 parts per million of soil, but the concentration can reach 20000 parts per million (2 percent) near old lead mines. Lead exists in seawater at concentrations of 2 parts per trillion. Lead makes up 1.7 parts per million of the human body by weight. Human activity releases more lead into the environment than any other metal. Flerovium only occurs in particle accelerators.


History


Discoveries and uses in antiquity

Carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon makes ...
, tin, and
lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale of mineral hardness#Intermediate ...
are a few of the elements well known in the ancient world, together with
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
,
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish ...
, mercury,
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
, and
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
. Silicon as silica in the form of rock crystal was familiar to the predynastic Egyptians, who used it for beads and small vases; to the early Chinese; and probably to many others of the ancients. The manufacture of glass containing silica was carried out both by the Egyptians – at least as early as 1500 BCE – and by the
Phoenicians Phoenicia () was an ancient thalassocratic civilization originating in the Levant region of the eastern Mediterranean, primarily located in modern Lebanon. The territory of the Phoenician city-states extended and shrank throughout their hist ...
. Many of the naturally occurring compounds or
silicate minerals Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually cons ...
were used in various kinds of mortar for construction of dwellings by the earliest people. The origins of tin seem to be lost in history. It appears that bronzes, which are alloys of copper and tin, were used by prehistoric man some time before the pure metal was isolated. Bronzes were common in early Mesopotamia, the Indus Valley, Egypt, Crete, Israel, and Peru. Much of the tin used by the early Mediterranean peoples apparently came from the Scilly Isles and Cornwall in the British Isles, where mining of the metal dates from about 300–200 BCE. Tin mines were operating in both the Inca and Aztec areas of South and Central America before the Spanish conquest. Lead is mentioned often in early Biblical accounts. The Babylonians used the metal as plates on which to record inscriptions. The Romans used it for tablets, water pipes, coins, and even cooking utensils; indeed, as a result of the last use, lead poisoning was recognized in the time of Augustus Caesar. The compound known as white lead was apparently prepared as a decorative pigment at least as early as 200 BCE.


Modern discoveries

Amorphous elemental silicon was first obtained pure in 1824 by the Swedish chemist
Jöns Jacob Berzelius Baron Jöns Jacob Berzelius (; by himself and his contemporaries named only Jacob Berzelius, 20 August 1779 – 7 August 1848) was a Swedish chemist. Berzelius is considered, along with Robert Boyle, John Dalton, and Antoine Lavoisier, to be ...
; impure silicon had already been obtained in 1811. Crystalline elemental silicon was not prepared until 1854, when it was obtained as a product of electrolysis. Germanium is one of three elements the existence of which was predicted in 1869 by the Russian chemist
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February O.S. 27 January">Old_Style_and_New_Style_dates.html" ;"title="no ...
when he first devised his periodic table. However, the element was not actually discovered for some time. In September 1885, a miner discovered a mineral sample in a silver mine and gave it to the mine manager, who determined that it was a new mineral and sent the mineral to
Clemens A. Winkler Clemens is both a Late Latin masculine given name and a surname meaning "merciful". Notable people with the name include: Surname * Adelaide Clemens (born 1989), Australian actress. * Andrew Clemens (b. 1852 or 1857–1894), American folk artist * ...
. Winkler realized that the sample was 75% silver, 18% sulfur, and 7% of an undiscovered element. After several months, Winkler isolated the element and determined that it was element 32. The first attempt to discover flerovium (then referred to as "element 114") was in 1969, at the Joint Institute for Nuclear Research, but it was unsuccessful. In 1977, researchers at the Joint Institute for Nuclear Research bombarded plutonium-244 atoms with calcium-48, but were again unsuccessful. This nuclear reaction was repeated in 1998, this time successfully.


Etymologies

The word "carbon" comes from the Latin word ''carbo'', meaning "charcoal".The word "silicon" comes from the Latin word ''silex'' or ''silicis'', which means "flint". The word "germanium" comes from the word ''germania'', which is Latin for Germany, the country where germanium was discovered. The word "tin" derives from the Old English word ''tin''. The word "lead" comes from the Old English word ''lead''. Flerovium was named after
Georgy Flyorov Georgii Nikolayevich Flyorov (also spelled Flerov, rus, Гео́ргий Никола́евич Флёров, p=gʲɪˈorgʲɪj nʲɪkɐˈlajɪvʲɪtɕ ˈflʲɵrəf; 2 March 1913 – 19 November 1990) was a Soviet physicist who is known for h ...
and his Institute.


Applications

Carbon is most commonly used in its
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek language ...
form. In this form, carbon is used for steelmaking, as
carbon black Carbon black (subtypes are acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of coal and coal tar, vegetable matter, or petroleum products, including fuel oil, fluid ...
, as a filling in tires, in
respirators A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including fumes, vapours, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories of respir ...
, and as activated charcoal. Carbon is also used in the form of
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on la ...
is commonly used as the lead in pencils.
Diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
, another form of carbon, is commonly used in jewelry. Carbon fibers are used in numerous applications, such as
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioiso ...
struts, because the fibers are highly strong yet elastic.
Silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
has a wide variety of applications, including
toothpaste Toothpaste is a paste or gel dentifrice used with a toothbrush to clean and maintain the aesthetics and health of teeth. Toothpaste is used to promote oral hygiene: it is an abrasive that aids in removing dental plaque and food from the teeth ...
, construction fillers, and silica is a major component of
glass Glass is a non-Crystallinity, crystalline, often transparency and translucency, transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most ...
. 50% of pure silicon is devoted to the manufacture of metal alloys. 45% of silicon is devoted to the manufacture of silicones. Silicon is also commonly used in
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
s since the 1950s. Germanium was used in semiconductors until the 1950s, when it was replaced by silicon. Radiation detectors contain germanium. Germanium dioxide is used in
fiber optics An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means ...
and wide-angle camera lenses. A small amount of germanium mixed with
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
can make silver tarnish-proof. The resulting alloy is known as argentium. Solder is the most important use of tin; 50% of all tin produced goes into this application. 20% of all tin produced is used in tin plate. 20% of tin is also used by the chemical industry. Tin is also a constituent of numerous alloys, including pewter. Tin (IV) oxide has been commonly used in ceramics for thousands of years. Cobalt stannate is a tin compound which is used as a cerulean blue pigment. 80% of all lead produced goes into Lead–acid battery, lead–acid batteries. Other applications for lead include weights, pigments, and shielding against radioactive materials. Lead was historically used in gasoline in the form of tetraethyllead, but this application has been discontinued due to concerns of toxicity.


Production

Carbon's allotrope diamond is produced mostly by Russia, Botswana, Congo (area), Congo, Canada, and South Africa, India. 80% of all synthetic diamonds are produced by Russia. China produces 70% of the world's graphite. Other graphite-mining countries are Brazil, Canada, and Mexico. Silicon can be produced by heating silica with carbon. There are some germanium ores, such as germanite, but these are not mined on account of being rare. Instead, germanium is extracted from the ores of metals such as zinc. In Russia and China, germanium is also separated from coal deposits. Germanium-containing ores are first treated with chlorine to form germanium tetrachloride, which is mixed with hydrogen gas. Then the germanium is further refined by zone refining. Roughly 140 metric tons of germanium are produced each year. Mines output 300,000 metric tons of tin each year. China, Indonesia, Peru, Bolivia, and Brazil are the main producers of tin. The method by which tin is produced is to heat the tin mineral cassiterite (SnO2) with coke (fuel), coke. The most commonly mined lead ore is galena (lead sulfide). 4 million metric tons of lead are newly mined each year, mostly in China, Australia, the United States, and Peru. The ores are mixed with coke and limestone and roasting (metallurgy), roasted to produce pure lead. Most lead is recycled from lead batteries. The total amount of lead ever mined by humans amounts to 350 million metric tons.


Biological role

Carbon is a key element to all known life. It is in all organic compounds, for example, DNA, steroids, and proteins. Carbon's importance to life is primarily due to its ability to form numerous bonds with other elements. There are 16 kilograms of carbon in a typical 70-kilogram human. Silicon-based life's feasibility is commonly discussed. However, it is less able than carbon to form elaborate rings and chains. Silicon in the form of silicon dioxide is used by diatoms and sea sponges to form their cell walls and skeletons. Silicon is essential for bone growth in chickens and rats and may also be essential in humans. Humans consume on average between 20 and 1200 milligrams of silicon per day, mostly from cereals. There is 1 gram of silicon in a typical 70-kilogram human. A biological role for germanium is not known, although it does stimulate metabolism. In 1980, germanium was reported by Kazuhiko Asai to benefit health, but the claim has not been proven. Some plants take up germanium from the soil in the form of germanium oxide. These plants, which include Food grain, grains and vegetables contain roughly 0.05 parts per million of germanium. The estimated human intake of germanium is 1 milligram per day. There are 5 milligrams of germanium in a typical 70-kilogram human. Tin has been shown to be essential for proper growth in rats, but there is, as of 2013, no evidence to indicate that humans need tin in their diet. Plants do not require tin. However, plants do collect tin in their roots. Wheat and maize contain seven and three parts per million respectively. However, the level of tin in plants can reach 2000 parts per million if the plants are near a tin smelter. On average, humans consume 0.3 milligrams of tin per day. There are 30 milligrams of tin in a typical 70-kilogram human. Lead has no known biological role, and is in fact highly toxic, but some microbes are able to survive in lead-contaminated environments. Some plants, such as cucumbers contain up to tens of parts per million of lead. There are 120 milligrams of lead in a typical 70-kilogram human. Flerovium has no biological role and instead is found and made only in particle accelerators.


Toxicity

Elemental carbon is not generally toxic, but many of its compounds are, such as
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
and hydrogen cyanide. However, carbon dust can be dangerous because it lodges in the lungs in a manner similar to asbestos. Silicon minerals are not typically poisonous. However, silicon dioxide dust, such as that emitted by volcanoes can cause adverse health effects if it enters the lungs. Germanium can interfere with such enzymes as lactic acid, lactate and alcohol dehydrogenase. Organic germanium compounds are more toxic than inorganic germanium compounds. Germanium has a low degree of mouth, oral toxicity in animals. Severe germanium poisoning can cause death by respiratory paralysis. Some tin compounds are toxic to ingest, but most inorganic compounds of tin are considered nontoxic. Organic tin compounds, such as trimethyl tin and triethyl tin are highly toxic, and can disrupt metabolic processes inside cells. Lead and its compounds, such as lead acetates are highly toxic. Lead poisoning can cause headaches, stomach pain, constipation, and gout. Flerovium is too radioactive to test if its toxic or not although its high radioactivity alone would be toxic.


References

{{DEFAULTSORT:Carbon Group Groups (periodic table)