Uses
Shaft couplings are used in machinery for several purposes. A primary function is to transfer power from one end to another end (ex: motor transfer power to pump through coupling). Other common uses: * To alter the vibration characteristics of rotating units * To connect the driving and the driven part * To introduce protection * To reduce the transmission of shock loads from one shaft to another * To slip when overload occursTypes
Beam
Bush pin flange
Bush pin flange coupling is used for slightly imperfect alignment of the two shafts. This is modified form of the protected type flange coupling. This type of coupling has pins and it works with coupling bolts. The rubber or leather bushes are used over the pins. The coupling has two halves dissimilar in construction. The pins are rigidly fastened by nuts to one of the flange and kept loose on the other flange. This coupling is used to connect shafts which have a small parallel misalignment, angular misalignment or axial misalignment. In this coupling the rubber bushing absorbs shocks and vibration during its operations. This type of coupling is mostly used to couple electric motors and machines.Constant velocity
There are various types of constant-velocity (CV) couplings: Rzeppa joint, Double cardan joint, and Thompson coupling.Clamp or split-muff
In this coupling, the muff or sleeve is made into two halves parts of the cast iron and they are joined by means of mild steel studs or bolts. The advantages of this coupling is that assembling or disassembling of the coupling is possible without changing the position of the shaft. This coupling is used for heavy power transmission at moderate speed.Diaphragm
Diaphragm couplings transmit torque from the outside diameter of a flexible plate to the inside diameter, across the spool or spacer piece, and then from inside to outside diameter. The deforming of a plate or series of plates from I.D. to O.D accomplishes the misalignment.Disc
Disc couplings transmit torque from a driving to a driven bolt tangentially on a common bolt circle. Torque is transmitted between the bolts through a series of thin, stainless steel discs assembled in a pack. Misalignment is accomplished by deforming of the material between the bolts.Elastic
Flexible
Flexible couplings are usually used to transmit torque from one shaft to another when the two shafts are slightly misaligned. They can accommodate varying degrees of misalignment up to 1.5° and some parallel misalignment. They can also be used for vibration damping or noise reduction. In rotating shaft applications a flexible coupling can protect the driving and driven shaft components (such as bearings) from the harmful effects of conditions such as misaligned shafts, vibration, shock loads, and thermal expansion of the shafts or other components. At first, flexible couplings separate into two essential groups, metallic and elastomeric. Metallic types utilize freely fitted parts that roll or slide against one another or, on the other hand, non-moving parts that bend to take up misalignment. Elastomeric types, then again, gain flexibility from resilient, non-moving, elastic or plastic elements transmitting torque between metallic hubs.Fluid
Gear
A ''gear coupling'' is a mechanical device for transmitting torque between two shafts that are notGeislinger
Giubo
Grid
A ''grid coupling'' is composed of two shaft hubs, a metallic grid spring, and a split cover kit. Torque is transmitted between the two coupling shaft hubs through the metallic grid spring element. Like metallic gear and disc couplings, grid couplings have a high torque density. A benefit of grid couplings, over either gear or disc couplings, is the ability their grid coupling spring elements have to absorb and spread peak load impact energy over time. This reduces the magnitude of peak loads and offers some vibration dampening capability. A negative of the grid coupling design is that it generally is very limited in its ability to accommodate the misalignment.Highly flexible
Hirth joints
Hirth joints use tapered teeth on two shaft ends meshed together to transmit torque.Hydrodynamic
Jaw
Jaw coupling is also known as spider or Lovejoy coupling.Magnetic
A magnetic coupling uses magnetic forces to transmit the power from one shaft to another without any contact. This allows for full medium separation. It can provide the ability to hermetically separate two areas whilst continuing to transmit mechanical power from one to the other making these couplings ideal for applications where prevention of cross-contamination is essential.Oldham
An ''Oldham coupling'' has three discs, one coupled to the input, one coupled to the output, and a middle disc that is joined to the first two by tongue and groove. The tongue and groove on one side is perpendicular to the tongue and groove on the other. The middle disc rotates around its center at the same speed as the input and output shafts. Its center traces a circular orbit, twice per rotation, around the midpoint between input and output shafts. Often springs are used to reduce backlash of the mechanism. An advantage to this type of coupling, as compared to two universal joints, is its compact size. The coupler is named for John Oldham who invented it inRag joint
Rag joints are commonly used on automotiveRigid
Rigid couplings are used when precise shaft alignment is required; any shaft misalignment will affect the coupling's performance as well as its life span, because rigid couplings do not have the ability to compensate for misalignment. Due to this, their application is limited, and they're typically used in applications involving vertical drivers. Clamped or compression rigid couplings come in two parts and fit together around the shafts to form a sleeve. They offer more flexibility than sleeved models, and can be used on shafts that are fixed in place. They generally are large enough so that screws can pass all the way through the coupling and into the second half to ensure a secure hold. Flanged rigid couplings are designed for heavy loads or industrial equipment. They consist of short sleeves surrounded by a perpendicular flange. One coupling is placed on each shaft so the two flanges line up face to face. A series of screws or bolts can then be installed in the flanges to hold them together. Because of their size and durability, flanged units can be used to bring shafts into alignment before they are joined.Schmidt
Sleeve, box, or muff
A sleeve coupling consists of a pipe whose bore is finished to the required tolerance based on the shaft size. Based on the usage of the coupling a keyway is made in the bore in order to transmit the torque by means of the key. Two threaded holes are provided in order to lock the coupling in position. Sleeve couplings are also known as box couplings. In this case shaft ends are coupled together and abutted against each other which are enveloped by ''muff'' or ''sleeve''. A ''gib head sunk keys'' hold the two shafts and sleeve together (this is the simplest type of the coupling) It is made from the cast iron and very simple to design and manufacture. It consists of a hollow pipe whose inner diameter is same as diameter of the shafts. The hollow pipe is fitted over a two or more ends of the shafts with the help of the taper sunk key. A key and sleeve are useful to transmit power from one shaft to another shaft.Tapered shaft lock
A tapered lock is a form of keyless shaft locking device that does not require any material to be removed from the shaft. The basic idea is similar to a clamp coupling but the moment of rotation is closer to the center of the shaft. An alternative coupling device to the traditionalTwin spring
A flexible coupling made from two counter-wound springs with a ball bearing in the center, which allows torque transfer from input to output shaft. Requires no lubrication to consistently run as it has no internal components.Universal joint
Maintenance and failure
Coupling maintenance requires a regularly scheduled inspection of each coupling. It consists of: * Performing visual inspections * Checking for signs of wear or fatigue * Cleaning couplings regularly * Checking and changing lubricant regularly if the coupling is lubricated. This maintenance is required annually for most couplings and more frequently for couplings in adverse environments or in demanding operating conditions. * Documenting the maintenance performed on each coupling, along with the date. Even with proper maintenance, however, couplings can fail. Underlying reasons for failure, other than maintenance, include: * Improper installation * Poor coupling selection * Operation beyond design capabilities. External signs that indicate potential coupling failure include: * Abnormal noise, such as screeching, squealing or chattering * Excessive vibration or wobble * Failed seals indicated by lubricant leakage or contamination.Balance
Couplings are normally balanced at the factory prior to being shipped, but they occasionally go out of balance in operation. Balancing can be difficult and expensive, and is normally done only when operating tolerances are such that the effort and the expense are justified. The amount of coupling unbalance that can be tolerated by any system is dictated by the characteristics of the specific connected machines and can be determined by detailed analysis or experience.See also
*References
External links
* Yutaka Nishiyama