HOME



picture info

Yao Graph
In computational geometry, the Yao graph, named after Andrew Yao, is a kind of geometric spanner, a weighted undirected graph connecting a set of geometric points with the property that, for every pair of points in the graph, their shortest path has a length that is within a constant factor of their Euclidean distance. The basic idea underlying the two-dimensional Yao graph is to surround each of the given points by equally spaced rays, partitioning the plane into sectors with equal angles, and to connect each point to its nearest neighbor in each of these sectors. Associated with a Yao graph is an integer parameter which is the number of rays and sectors described above; larger values of produce closer approximations to the Euclidean distance. The stretch factor is at most 1/(\cos \theta - \sin \theta), where \theta is the angle of the sectors. The same idea can be extended to point sets in more than two dimensions, but the number of sectors required grows exponentially w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrew Yao
Andrew Chi-Chih Yao ( zh , c = 姚期智 , p = Yáo Qīzhì; born December 24, 1946) is a Chinese computer scientist, physicist, and computational theorist. He is currently a professor and the dean of Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University. Yao used the minimax theorem to prove what is now known as Yao's principle. Yao was raised in Taiwan and graduated from National Taiwan University. He earned a master's degree and his PhD in physics from Harvard University, then earned a second doctorate in computer science from the University of Illinois Urbana-Champaign. Yao was a naturalized U.S. citizen, and worked for many years in the U.S. In 2015, together with Yang Chen-Ning, he renounced his U.S. citizenship and became an academician of the Chinese Academy of Sciences. Early life and education Yao was born in Shanghai, China, in 1946. His parents later moved to Hong Kong and then Taiwan, where Yao was raised. Yao graduated with his B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Spanner
A geometric spanner or a -spanner graph or a -spanner was initially introduced as a weighted graph over a set of points as its vertices for which there is a -path between any pair of vertices for a fixed parameter . A -path is defined as a path through the graph with weight at most times the spatial distance between its endpoints. The parameter is called the stretch factor or dilation factor of the spanner. In computational geometry, the concept was first discussed by L.P. Chew in 1986, although the term "spanner" was not used in the original paper. The notion of graph spanners has been known in graph theory: -spanners are spanning subgraphs of graphs with similar dilation property, where distances between graph vertices are defined in graph-theoretical terms. Therefore geometric spanners are graph spanners of complete graphs embedded in the plane with edge weights equal to the distances between the embedded vertices in the corresponding metric. Spanners may be used in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Undirected Graph
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing money is not necessarily reciprocated. Gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Point (geometry)
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, or its generalization to other kinds of mathematical spaces. As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist. In classical Euclidean geometry, a point is a primitive notion, defined as "that which has no part". Points and other primitive notions are not defined in terms of other concepts, but only by certain formal properties, called axioms, that they must satisfy; for example, ''"there is exactly one straight line that passes through two distinct points"''. As physical diagrams, geometric figures are made with tools such as a compass, scriber, or pen, whose pointed tip can mark a small dot or prick a small hole representing a point, or can be drawn across a surface to represent a curve. A po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shortest Path
In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length or distance of each segment. Definition The shortest path problem can be defined for graphs whether undirected, directed, or mixed. The definition for undirected graphs states that every edge can be traversed in either direction. Directed graphs require that consecutive vertices be connected by an appropriate directed edge. Two vertices are adjacent when they are both incident to a common edge. A path in an undirected graph is a sequence of vertices P = ( v_1, v_2, \ldots, v_n ) \in V \times V \times \cdots \times V suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras. In the Greek deductive geometry exemplified by Euclid's ''Elements'', distances were not represented as numbers but line segments of the same length, which were considered "equal". The notion of distance is inherent in the compass tool used to draw a circle, whose points all have the same distance from a common center point. The connection from the Pythagorean theorem to distance calculation was not made until the 18th century. The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ray (geometry)
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word ''line'' may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points (its ''endpoints''). Euclid's ''Elements'' defines a straight line as a "breadthless length" that "lies evenly with respect to the points on itself", and introduced several postulates as basic unprovable properties on which the rest of geometry was established. ''Euclidean line'' and ''Euclidean geometry'' are terms introduced to avoid confusion with generalizations introduced since the end of the 19th century, such as non-Euclidean, projective, and affine geometry. Properties In the Greek deductive geometry of Euclid's ''Elements'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nearest Neighbor Graph
The nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from ''p'' to ''q'' whenever ''q'' is a nearest neighbor of ''p'', a point whose distance from ''p'' is minimum among all the given points other than ''p'' itself. In many uses of these graphs, the directions of the edges are ignored and the NNG is defined instead as an undirected graph. However, the nearest neighbor relation is not a symmetric one, i.e., ''p'' from the definition is not necessarily a nearest neighbor for ''q''. In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to bear in mind that this is not always the case. For situations in which it is necessary to make the nearest neighbor for each object unique, the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stretch Factor
The stretch factor (i.e., Lipschitz continuity#Definition, bilipschitz constant) of an embedding measures the factor by which the embedding distorts distances. Suppose that one metric space is embedded into another metric space by a metric map, a continuous one-to-one function that preserves or reduces the distance between every pair of points. Then the embedding gives rise to two different notions of distance between pairs of points in . Any pair of points in has both an intrinsic metric, intrinsic distance, the distance from to in , and a smaller extrinsic distance, the distance from to in . The stretch factor of the pair is the ratio between these two distances, . The stretch factor of the whole mapping is the supremum of the stretch factors of all pairs of points. The stretch factor has also been called the distortion or dilation of the mapping. The stretch factor is important in the theory of geometric spanners, weighted graphs that approximate the Euclidean distanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Minimum Spanning Tree
A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights. The edges of the minimum spanning tree meet at angles of at least 60°, at most six to a vertex. In higher dimensions, the number of edges per vertex is bounded by the kissing number of tangent unit spheres. The total length of the edges, for points in a unit square, is at most proportional to the square root of the number of points. Each edge lies in an empty region of the plane, and these regions can be used to prove that the Euclidean minimum spanning tree is a subgraph of other geometric graphs including ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]