The stretch factor (i.e.,
bilipschitz constant) of an
embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup.
When some object X is said to be embedded in another object Y ...
measures the factor by which the embedding distorts
distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
s. Suppose that one
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
is embedded into another metric space by a
metric map, a continuous one-to-one function that preserves or reduces the distance between every pair of points. Then the embedding gives rise to two different notions of distance between pairs of points in . Any pair of points in has both an
intrinsic distance, the distance from to in , and a smaller extrinsic distance, the distance from to in . The stretch factor of the pair is the ratio between these two distances, . The stretch factor of the whole mapping is the
supremum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, ...
of the stretch factors of all pairs of points. The stretch factor has also been called the distortion or dilation of the mapping.
The stretch factor is important in the theory of
geometric spanner
A geometric spanner or a -spanner graph or a -spanner was initially introduced as a weighted graph over a set of points as its vertices for which there is a -path between any pair of vertices for a fixed parameter . A -path is defined as a path ...
s,
weighted graph
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
Symbols
A
B
...
s that approximate the
Euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is o ...
s between a set of points in the
Euclidean plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
. In this case, the embedded metric is a finite metric space, whose distances are
shortest path lengths in a graph, and the metric into which is embedded is the Euclidean plane. When the graph and its embedding are fixed, but the graph edge weights can vary, the stretch factor is minimized when the weights are exactly the Euclidean distances between the edge endpoints. Research in this area has focused on finding
sparse graph
In mathematics, a dense graph is a Graph (discrete mathematics), graph in which the number of edges is close to the maximal number of edges (where every pair of Vertex (graph theory), vertices is connected by one edge). The opposite, a graph with ...
s for a given point set that have low stretch factor.
The
Johnson–Lindenstrauss lemma
In mathematics, the Johnson–Lindenstrauss lemma is a result named after William B. Johnson and Joram Lindenstrauss concerning low-distortion embeddings of points from high-dimensional into low-dimensional Euclidean space. The lemma states that ...
asserts that any finite set with points in a Euclidean space can be embedded into a Euclidean space of dimension with distortion , for any constant , where the constant factor in the -notation depends on the choice of . This result, and related methods of constructing low-distortion metric embeddings, are important in the theory of
approximation algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned sol ...
s. A major open problem in this area is the
GNRS conjecture, which (if true) would characterize the families of graphs that have bounded-stretch embeddings into
spaces as being all minor-closed graph families.
In
knot theory
In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, the distortion of a knot is a
knot invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some i ...
, the minimum stretch factor of any embedding of the knot as a
space curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
in
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
.
Undergraduate researcher
John Pardon
John Vincent Pardon (born June 1989) is an American mathematician and works on geometry and topology. He is primarily known for having solved Gromov's problem on distortion of knots, for which he was awarded the 2012 Morgan Prize. He is a perman ...
won the 2012
Morgan Prize
The Morgan Prize (full name Frank and Brennie Morgan Prize for Outstanding Research in Mathematics by an Undergraduate Student) is an annual award given to an undergraduate student in the US, Canada, or Mexico who demonstrates superior mathematic ...
for his research showing that there is no upper bound on the distortion of
torus knot
In knot theory, a torus knot is a special kind of knot (mathematics), knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link (knot theory), link which lies on the surface of a torus in the same way. Each t ...
s, solving a problem originally posed by
Mikhail Gromov.
In the study of the
curve-shortening flow
In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a ...
, in which each point of a curve in the Euclidean plane moves perpendicularly to the curve, with speed proportional to the local curvature, proved that the stretch factor of any simple closed smooth curve (with intrinsic distances measured by arc length) changes monotonically. More specifically, at each pair that forms a local maximum of the stretch factor, the stretch factor is strictly decreasing, except when the curve is a circle. This property was later used to simplify the proof of the Gage–Hamilton–Grayson theorem, according to which every simple closed smooth curve stays simple and smooth until it collapses to a point, converging in shape to a circle before doing so.
[.]
References
{{reflist
Metric geometry