Tesseractihexadecachoron Net
   HOME



picture info

Tesseractihexadecachoron Net
In geometry, a truncated tesseract is a uniform 4-polytope formed as the Truncation (geometry), truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the ''truncated 16-cell''. Truncated tesseract The truncated tesseract is bounded by 24 cell (mathematics), cells: 8 truncated cubes, and 16 tetrahedron, tetrahedra. Alternate names * Truncated tesseract (Norman Johnson (mathematician), Norman W. Johnson) * Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) Construction The truncated tesseract may be constructed by Truncation (geometry), truncating the vertices of the tesseract at 1/(\sqrt+2) of the edge length. A regular tetrahedron is formed at each truncated vertex. The Cartesian coordinates of the vertices of a truncated tesseract having edge length 2 is given by all permutations of: :\left(\pm1,\ \pm(1+\sqrt),\ \pm(1+\sqrt),\ \pm(1+\sqrt)\right) Projections In the tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schlegel Wireframe 8-cell
Schlegel is a German occupational surname. Notable people with the surname include: * Anthony Schlegel (born 1981), American football player * August Wilhelm Schlegel (1767–1845), German poet, brother of Friedrich * Brad Schlegel (born 1968), Canadian ice hockey player * Bernhard Schlegel (born 1951), German-Canadian chemist * Carmela Schlegel (born 1983), Swiss swimmer * Catharina von Schlegel (1697 – after 1768), German hymn writer * Dorothea von Schlegel (1764–1839), German novelist and translator, wife of Friedrich * Elfi Schlegel (born 1964), Canadian gymnast and sportscaster * Frits Schlegel (1896–1965), Danish architect * Gustaaf Schlegel (1840–1903), Dutch sinologist and field naturalist * Hans Schlegel (born 1951), German astronaut * Helmut Schlegel (born 1943), German Franciscan, priest, author, meditation instructor, songwriter * Hermann Schlegel (1804–1884), German ornithologist and herpetologist * Johan Frederik Schlegel (1817–1896), Danish civil servant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bitruncation
In geometry, a bitruncation is an operation on regular polytopes. The original edges are lost completely and the original faces remain as smaller copies of themselves. Bitruncated regular polytopes can be represented by an extended Schläfli symbol notation or In regular polyhedra and tilings For regular polyhedra (i.e. regular 3-polytopes), a ''bitruncated'' form is the truncated dual. For example, a bitruncated cube is a truncated octahedron. In regular 4-polytopes and honeycombs For a regular 4-polytope, a ''bitruncated'' form is a dual-symmetric operator. A bitruncated 4-polytope is the same as the bitruncated dual, and will have double the symmetry if the original 4-polytope is self-dual. A regular polytope (or honeycomb) will have its cells bitruncated into truncated cells, and the vertices are replaced by truncated cells. Self-dual 4-polytope/honeycombs An interesting result of this operation is that self-dual 4-polytope (and honeycombs) remain cell-tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tetrakis 16-cell
Tetrakis may refer to: *Tetrakis (Paphlagonia), an ancient Greek city * Tetrakis cuboctahedron, convex polyhedron with 32 triangular faces *Tetrakis hexahedron, an Archimedean dual solid or a Catalan solid *Tetrakis square tiling, a tiling of the Euclidean plane *Tetrakis(triphenylphosphine)palladium(0), a catalyst in organic chemistry See also * Tetracus * Tetrakis legomenon, a word that occurs only four times within a context * Tetricus (other) * Tetrix (other) *Truncated tetrakis cube The truncated tetrakis cube, or more precisely an order-6 truncated tetrakis cube or hexatruncated tetrakis cube, is a convex polyhedron with 32 faces: 24 sets of 3 bilateral symmetry pentagons arranged in an Octahedral symmetry, octahedral arrange ...
, a convex polyhedron with 32 faces * {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truncated 8-cell Verf
In mathematics and computer science, truncation is limiting the number of digits right of the decimal point. Truncation and floor function Truncation of positive real numbers can be done using the floor function. Given a number x \in \mathbb_+ to be truncated and n \in \mathbb_0, the number of elements to be kept behind the decimal point, the truncated value of x is :\operatorname(x,n) = \frac. However, for negative numbers truncation does not round in the same direction as the floor function: truncation always rounds toward zero, the \operatorname function rounds towards negative infinity. For a given number x \in \mathbb_-, the function \operatorname is used instead :\operatorname(x,n) = \frac. Causes of truncation With computers, truncation can occur when a decimal number is typecast as an integer; it is truncated to zero decimal digits because integers cannot store non-integer real numbers. In algebra An analogue of truncation can be applied to polynomials. In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges conn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octagon
In geometry, an octagon () is an eight-sided polygon or 8-gon. A '' regular octagon'' has Schläfli symbol and can also be constructed as a quasiregular truncated square, t, which alternates two types of edges. A truncated octagon, t is a hexadecagon, . A 3D analog of the octagon can be the rhombicuboctahedron with the triangular faces on it like the replaced edges, if one considers the octagon to be a truncated square. Properties The sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°. If squares are constructed all internally or all externally on the sides of an octagon, then the midpoints of the segments connecting the centers of opposite squares form a quadrilateral that is both equidiagonal and orthodiagonal (that is, whose diagonals are equal in length and at right angles to each other).Dao Thanh Oai (2015), "Equilateral triangles and Kiepert perspectors in complex numbers", ''Forum Geometricorum'' 15, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the ''base'', in which case the opposite vertex is called the ''apex''; the shortest segment between the base and apex is the ''height''. The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedron
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tetrahedron is the simplest of all the ordinary convex polytope, convex polyhedra. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean geometry, Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid (geometry), pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron, the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such net (polyhedron), nets. For any tetrahedron there exists a sphere (called th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Hexahedron
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths and , where ''δS'' is the silver ratio, +1. Area and volume The area ''A'' and the volume ''V'' of a truncated cube of edge length ''a'' are: :\begin A &= 2\left(6+6\sqrt+\sqrt\right)a^2 &&\approx 32.434\,6644a^2 \\ V &= \fraca^3 &&\approx 13.599\,6633a^3. \end Orthogonal projections The ''truncated cube'' has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes. Spherical tiling The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Cube
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangle (geometry), triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths and , where ''δS'' is the silver ratio, +1. Area and volume The area ''A'' and the volume ''V'' of a truncated cube of edge length ''a'' are: :\begin A &= 2\left(6+6\sqrt+\sqrt\right)a^2 &&\approx 32.434\,6644a^2 \\ V &= \fraca^3 &&\approx 13.599\,6633a^3. \end Orthogonal projections The ''truncated cube'' has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons. The last two correspond to the B2 and A2 Coxeter planes. Spherical tiling The truncated cube can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is Conformal map, conformal, preserving angle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coxeter Diagram
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated at the University of Cambridge, with student visits to Princeton University. He worked for 60 years at the University of Toronto in Canada, from 1936 until his retirement in 1996, becoming a full professor there in 1948. His many honours included membership in the Royal Society of Canada, the Royal Society, and the Order of Canada. He was an author of 12 books, including '' The Fifty-Nine Icosahedra'' (1938) and '' Regular Polytopes'' (1947). Many concepts in geometry and group theory are named after him, including the Coxeter graph, Coxeter groups, Coxeter's loxodromic sequence of tangent circles, Coxeter–Dynkin diagrams, and the Todd–Coxeter algorithm. Biography Coxeter was born in Kensington, England, to Harold Samuel Coxeter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]