Ronald Björn Jensen
Ronald Björn Jensen (born April 1, 1936) is an American mathematician who lives in Germany, primarily known for his work in mathematical logic and set theory. Career Jensen completed a BA in economics at American University in 1959, and a Ph.D. in mathematics at the University of Bonn in 1964. His supervisor was Gisbert Hasenjaeger. Jensen taught at Rockefeller University, 1969–71, and the University of California, Berkeley, 1971–73. The balance of his academic career was spent in Europe at the University of Bonn, the University of Oslo, the University of Freiburg, the University of Oxford, and the Humboldt-Universität zu Berlin, from which he retired in 2001. He now resides in Berlin. Jensen was honored by the Association for Symbolic Logic as the first Gödel Lecturer in 1990. In 2015, the European Set Theory Society awarded him and John R. Steel the Hausdorff Medal for their paper "K without the measurable". Results Jensen's better-known results include the: * Axiomat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematical model, models, and mathematics#Calculus and analysis, change. History One of the earliest known mathematicians was Thales of Miletus (); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem. The number of known mathematicians grew when Pythagoras of Samos () established the Pythagorean school, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of Oxford
The University of Oxford is a collegiate university, collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the List of oldest universities in continuous operation, second-oldest continuously operating university globally. It expanded rapidly from 1167, when Henry II of England, Henry II prohibited English students from attending the University of Paris. When disputes erupted between students and the Oxford townspeople, some Oxford academics fled northeast to Cambridge, where they established the University of Cambridge in 1209. The two English Ancient university, ancient universities share many common features and are jointly referred to as ''Oxbridge''. The University of Oxford comprises 43 constituent colleges, consisting of 36 Colleges of the University of Oxford, semi-autonomous colleges, four permanent private halls and three societies (colleges that are depar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by L, is a particular Class (set theory), class of Set (mathematics), sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchy L_\alpha. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the Continuum hypothesis#The generalized continuum hypothesis, generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peano Arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consistency
In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when there is no formula \varphi such that \varphi \in \langle A \rangle and \lnot \varphi \in \langle A \rangle. A ''trivial'' theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a mod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Extensionality
The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. The axiom defines what a Set (mathematics), set is. Informally, the axiom means that the two set (mathematics), sets ''A'' and ''B'' are equal if and only if ''A'' and ''B'' have the same members. Etymology The term ''extensionality'', as used in '''Axiom of Extensionality has its roots in logic. An intensional definition describes the necessary and sufficient conditions for a term to apply to an object. For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -6, -8..." In logic, the Extension (logic), extension of a Predicate (mathematical logic), predicate is the set of all things for which the predicate is true. The logical term was introduce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
New Foundations
In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed formulas of NF are the standard formulas of propositional calculus with two primitive predicates equality (=) and membership (\in). NF can be presented with only two axiom schemata: * Extensionality: Two objects with the same elements are the same object; formally, given any set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal to ''B''. * A restricted axiom schema of comprehension: \ exists for each stratified formula \phi. A formula \phi is said to be ''stratified'' if there exists a function ''f'' from pieces of \phi's syntax to the natural numbers, such that for any atomic subformula x \in y of \phi we have ''f''(''y'') = ''f''(''x'') + 1, whil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiomatic Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hausdorff Medal
The Hausdorff medal is a mathematical prize awarded every two years by the European Set Theory Society. The award recognises the work considered to have had the most impact within set theory among all articles published in the previous five years. The award is named after the German mathematician Felix Hausdorff (1868–1942). Winners *2013: Hugh Woodin for his articles "Suitable extender models I" ('' J. Math. Log.'' 10 (2010), no. 1–2, pp. 101–339) and "Suitable extender models II: beyond ''ω''-huge" (''J. Math. Log.'' 11 (2011), no. 2, pp. 115–436). *2015: Ronald Jensen and John R. Steel for their article " without the measurable" (''The Journal of Symbolic Logic'', Volume 78, Issue 3 (2013), pp. 708–734). *2017: Maryanthe Malliaris and Saharon Shelah for their article "General topology meets model theory, on 𝔭 and 𝔱" ('' Proc. Natl. Acad. Sci. USA'' 110 (2013), no. 33, 13300–13305). *2019: Itay Neeman for his work on "the new method of itera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John R
John R. (born John Richbourg, August 20, 1910 – February 15, 1986) was an American radio disc jockey who attained fame in the 1950s and 1960s for playing rhythm and blues music on Nashville radio station WLAC. He was also a notable record producer and artist manager. Richbourg was arguably the most popular and charismatic of the four announcers at WLAC who showcased popular African-American music in nightly programs from the late 1940s to the early 1970s. (The other three were Gene Nobles, Herman Grizzard, and Bill "Hoss" Allen.) Later rock music disc jockeys, such as Alan Freed and Wolfman Jack, mimicked Richbourg's practice of using speech that simulated African-American street language of the mid-twentieth century. Richbourg's highly stylized approach to on-air presentation of both music and advertising earned him popularity, but it also created identity confusion. Because Richbourg and fellow disc jockey Allen used African-American speech patterns, many listeners thought t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Journal Of Symbolic Logic
''The'' is a grammatical article in English, denoting nouns that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with nouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of the archaic pronoun ''thee' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gödel Lecture
The Gödel Lecture is an honor in mathematical logic given by the Association for Symbolic Logic, associated with an annual lecture at the association's general meeting. The award is named after Kurt Gödel and has been given annually since 1990. Award winners The list of award winners and lecture titles is maintained online by the Association for Symbolic Logic. * 1990 Ronald Jensen, ''Inner Models and Large Cardinals.'' * 1991 Dana Scott, ''Will Logicians be Replaced by Machines?'' * 1992 Joseph R. Shoenfield, ''The Priority Method.'' * 1993 Angus Macintyre, ''Logic of Real and p-adic Analysis: Achievements and Challenges.'' * 1994 Donald A. Martin, ''L(R): A Survey.'' * 1995 Leo Harrington, ''Gödel, Heidegger, and Direct Perception (or, Why I am a Recursion Theorist).'' * 1996 Saharon Shelah, ''Categoricity without compactness.'' * 1997 Solomon Feferman, ''Occupations and Preoccupations with Gödel: His *Works* and the Work.'' * 1998 Alexander S. Kechris, ''Current T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |