Real Closed Field
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definition A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artin–Schreier Theory
In mathematics, Artin–Schreier theory is a branch of Galois theory, specifically a positive characteristic (algebra), characteristic analogue of Kummer theory, for Galois Field extension, extensions of degree equal to the characteristic ''p''. introduced Artin–Schreier theory for extensions of prime degree ''p'', and generalized it to extensions of prime power degree ''p''''n''. If ''K'' is a field (mathematics), field of characteristic ''p'', a prime number, any polynomial of the form :X^p - X - \alpha,\, for \alpha in ''K'', is called an ''Artin–Schreier polynomial''. When \alpha\neq \beta^p-\beta for all \beta \in K, this polynomial is Irreducibility (mathematics), irreducible in ''K''[''X''], and its splitting field over ''K'' is a cyclic extension of ''K'' of degree ''p''. This follows since for any root ''β'', the numbers ''β'' + ''i'', for 1\le i\le p, form all the roots—by Fermat's little theorem—so the splitting field is K(\beta) . Conversely, any Galois ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Root Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Levi-Civita Field
In mathematics, the Levi-Civita field, named after Tullio Levi-Civita, is a non-Archimedean ordered field; i.e., a system of numbers containing infinite and infinitesimal quantities. It is usually denoted \mathcal. Each member a can be constructed as a formal series of the form : a = \sum_ a_q\varepsilon^q , where \mathbb is the set of rational numbers, the coefficients a_q are real numbers, and \varepsilon is to be interpreted as a fixed positive infinitesimal. We require that for every rational number r, there are only finitely many q\in\mathbb less than r with a_q\neq 0; this restriction is necessary in order to make multiplication and division well defined and unique. Two such series are considered equal only if all their coefficients are equal. The ordering is defined according to the dictionary ordering of the list of coefficients, which is equivalent to the assumption that \varepsilon is an infinitesimal. The real numbers are embedded in this field as series in which a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Puiseux Series
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + x^ + \cdots \end is a Puiseux series in the indeterminate . Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850.Puiseux (1850, 1851) The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator , a Puiseux series becomes a Laurent series in an th root of the indeterminate. For example, the example above is a Laurent series in x^. Because a complex number has th roots, a convergent Puiseux series typically defines functions in a neighborhood of . Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation P(x,y)=0 with complex coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Definable Number
Informally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, \sqrt, can be defined as the unique positive solution to the equation x^2 = 2, and it can be constructed with a compass and straightedge. Different choices of a formal language or its interpretation give rise to different notions of definability. Specific varieties of definable numbers include the constructible numbers of geometry, the algebraic numbers, and the computable numbers. Because formal languages can have only countably many formulas, every notion of definable numbers has at most countably many definable real numbers. However, by Cantor's diagonal argument, there are uncountably many real numbers, so almost every real number is undefinable. Constructible numbers One way of specifying a real number uses geometric techniques. A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computable Number
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers, computable reals, or recursive reals. The concept of a computable real number was introduced by Émile Borel in 1912, using the intuitive notion of computability available at the time. Equivalent definitions can be given using μ-recursive functions, Turing machines, or λ-calculus as the formal representation of algorithms. The computable numbers form a real closed field and can be used in the place of real numbers for many, but not all, mathematical purposes. Informal definition In the following, Marvin Minsky defines the numbers to be computed in a manner similar to those defined by Alan Turing in 1936; i.e., as "sequences of digits interpreted as decimal fractions" between 0 and 1: The key notions in the definition are (1) that some ''n'' is specified at the start ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Numbers
In mathematics, an algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is an algebraic number, because it is a root of the polynomial X^2 - X - 1, i.e., a solution of the equation x^2 - x - 1 = 0, and the complex number 1 + i is algebraic as a root of X^4 + 4. Algebraic numbers include all integers, rational numbers, and ''n''-th roots of integers. Algebraic complex numbers are closed under addition, subtraction, multiplication and division, and hence form a field, denoted \overline. The set of algebraic real numbers \overline \cap \R is also a field. Numbers which are not algebraic are called transcendental and include and . There are countably many algebraic numbers, hence almost all real (or complex) numbers (in the sense of Lebesgue measure) are transcendental. Examples * All rational numbers are algebraic. Any rational number, express ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weakly O-minimal Structure
In model theory, a weakly o-minimal structure is a model-theoretic structure whose definable sets in the domain are just finite unions of convex sets. Definition A linearly ordered structure, ''M'', with language ''L'' including an ordering relation <, is called weakly o-minimal if every parametrically definable subset of ''M'' is a finite union of convex (definable) subsets. A is weakly o-minimal if all its models are weakly o-minimal. Note that, in contrast to o-minimality, it is possible for a theory to have models that are weakly o-minimal and to have other models that are not weakly o-minimal. Difference from o-minimality In an o-minimal structure the definable sets in are finite unions of points ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intermediate Value Theorem
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two important corollaries: # If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). # The image of a continuous function over an interval is itself an interval. Motivation This captures an intuitive property of continuous functions over the real numbers: given ''f'' continuous on ,2/math> with the known values f(1) = 3 and f(2) = 5, then the graph of y = f(x) must pass through the horizontal line y = 4 while x moves from 1 to 2. It represents the idea that the graph of a continuous function on a closed interval can be drawn without lifting a pencil from the paper. Theorem The intermediate value theorem states the following: Consider the closed interval I = ,b/math> ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Extension
In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, every element of is a root of a non-zero polynomial with coefficients in . A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field \Q of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory. Another example of a common algebraic extension is the extension \Complex/\R of the real numbers by the complex numbers. Some properties All transcendental extensions are of infinite degree. This in turn implies that all finite extensions are algebraic. The converse is not true however: there are infinite extensions which are algebraic. For instance, the field of all algebraic numbers is an infinite algebraic extension of the rational ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ''L''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains the multiplicative identity 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory—indeed in any area where fields appear prominently. Definition and notation Suppose that ''E''/''F'' is a field extension. Then ''E'' may be considered as a vector space over ''F'' (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by 'E'':''F'' The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension ''E''/''F'' is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements). The degree should not be confused with the transcendence degree of a field; for example, the field Q(' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |