HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, particularly in
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ''L''. For example, under the usual notions of
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s are an extension field of the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, and in the study of polynomial roots through
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
, and are widely used in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
.


Subfield

A subfield K of a field L is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains the
multiplicative identity In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero element. For example, the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s is a subfield of the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, which is itself a subfield of the complex numbers. More generally, the field of rational numbers is (or is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to) a subfield of any field of characteristic 0. The characteristic of a subfield is the same as the characteristic of the larger field.


Extension field

If K is a subfield of L, then L is an extension field or simply extension of K, and this pair of fields is a field extension. Such a field extension is denoted L/K (read as "L over K"). If L is an extension of F, which is in turn an extension of K, then F is said to be an intermediate field (or intermediate extension or subextension) of L/K. Given a field extension L/K, the larger field L is a K-
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. The
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
of this vector space is called the degree of the extension and is denoted by :K/math>. The degree of an extension is 1 if and only if the two fields are equal. In this case, the extension is a . Extensions of degree 2 and 3 are called quadratic extensions and cubic extensions, respectively. A finite extension is an extension that has a finite degree. Given two extensions L/K and M/L, the extension M/K is finite if and only if both L/K and M/L are finite. In this case, one has : : K : Lcdot : K Given a field extension L/K and a subset S of L, there is a smallest subfield of L that contains K and S. It is the intersection of all subfields of L that contain K and S, and is denoted by K(S) (read as "K ' S"). One says that K(S) is the field ''generated'' by S over K, and that S is a generating set of K(S) over K. When S=\ is finite, one writes K(x_1, \ldots, x_n) instead of K(\), and one says that K(S) is over K. If S consists of a single element s, the extension K(s)/K is called a simple extension and s is called a primitive element of the extension. An extension field of the form K(S) is often said to result from the ' of S to K. In characteristic 0, every finite extension is a simple extension. This is the primitive element theorem, which does not hold true for fields of non-zero characteristic. If a simple extension K(s)/K is not finite, the field K(s) is isomorphic to the field of rational fractions in s over K.


Caveats

The notation ''L'' / ''K'' is purely formal and does not imply the formation of a quotient ring or
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
or any other kind of division. Instead the slash expresses the word "over". In some literature the notation ''L'':''K'' is used. It is often desirable to talk about field extensions in situations where the small field is not actually contained in the larger one, but is naturally embedded. For this purpose, one abstractly defines a field extension as an injective ring homomorphism between two fields. ''Every'' ring homomorphism between fields is injective because fields do not possess nontrivial proper ideals, so field extensions are precisely the morphisms in the category of fields. Henceforth, we will suppress the injective homomorphism and assume that we are dealing with actual subfields.


Examples

The field of complex numbers \Complex is an extension field of the field of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s \R, and \R in turn is an extension field of the field of rational numbers \Q. Clearly then, \Complex/\Q is also a field extension. We have Complex:\R=2 because \ is a basis, so the extension \Complex/\R is finite. This is a simple extension because \Complex = \R(i). R:\Q=\mathfrak c (the
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \ ...
), so this extension is infinite. The field :\Q(\sqrt) = \left \, is an extension field of \Q, also clearly a simple extension. The degree is 2 because \left\ can serve as a basis. The field :\begin \Q\left(\sqrt, \sqrt\right) &= \Q \left(\sqrt\right) \left(\sqrt\right) \\ &= \left\ \\ &= \left\, \end is an extension field of both \Q(\sqrt) and \Q, of degree 2 and 4 respectively. It is also a simple extension, as one can show that :\begin \Q(\sqrt, \sqrt) &= \Q (\sqrt + \sqrt) \\ &= \left \. \end Finite extensions of \Q are also called
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
s and are important in
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
. Another extension field of the rationals, which is also important in number theory, although not a finite extension, is the field of p-adic numbers \Q_p for a prime number ''p''. It is common to construct an extension field of a given field ''K'' as a quotient ring of the
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
''K'' 'X''in order to "create" a
root In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
for a given polynomial ''f''(''X''). Suppose for instance that ''K'' does not contain any element ''x'' with ''x''2 = −1. Then the polynomial X^2+1 is irreducible in ''K'' 'X'' consequently the ideal generated by this polynomial is maximal, and L = K (X^2+1) is an extension field of ''K'' which ''does'' contain an element whose square is −1 (namely the residue class of ''X''). By iterating the above construction, one can construct a splitting field of any polynomial from ''K'' 'X'' This is an extension field ''L'' of ''K'' in which the given polynomial splits into a product of linear factors. If ''p'' is any
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
and ''n'' is a positive integer, there is a unique (up to isomorphism)
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
GF(p^n) = \mathbb_ with ''pn'' elements; this is an extension field of the prime field \operatorname(p) = \mathbb_p = \Z/p\Z with ''p'' elements. Given a field ''K'', we can consider the field ''K''(''X'') of all
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s in the variable ''X'' with coefficients in ''K''; the elements of ''K''(''X'') are fractions of two
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s over ''K'', and indeed ''K''(''X'') is the
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of the polynomial ring ''K'' 'X'' This field of rational functions is an extension field of ''K''. This extension is infinite. Given a Riemann surface ''M'', the set of all meromorphic functions defined on ''M'' is a field, denoted by \Complex(M). It is a transcendental extension field of \Complex if we identify every complex number with the corresponding constant function defined on ''M''. More generally, given an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
''V'' over some field ''K'', the function field ''K''(''V''), consisting of the rational functions defined on ''V'', is an extension field of ''K''.


Algebraic extension

An element ''x'' of a field extension L/K is algebraic over ''K'' if it is a
root In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
of a nonzero
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
with coefficients in ''K''. For example, \sqrt 2 is algebraic over the rational numbers, because it is a root of x^2-2. If an element ''x'' of ''L'' is algebraic over ''K'', the
monic polynomial In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one ...
of lowest degree that has ''x'' as a root is called the minimal polynomial of ''x''. This minimal polynomial is irreducible over ''K''. An element ''s'' of ''L'' is algebraic over ''K'' if and only if the simple extension is a finite extension. In this case the degree of the extension equals the degree of the minimal polynomial, and a basis of the ''K''-
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''K''(''s'') consists of 1, s, s^2, \ldots, s^, where ''d'' is the degree of the minimal polynomial. The set of the elements of ''L'' that are algebraic over ''K'' form a subextension, which is called the algebraic closure of ''K'' in ''L''. This results from the preceding characterization: if ''s'' and ''t'' are algebraic, the extensions and are finite. Thus is also finite, as well as the sub extensions , and (if ). It follows that , ''st'' and 1/''s'' are all algebraic. An ''algebraic extension'' L/K is an extension such that every element of ''L'' is algebraic over ''K''. Equivalently, an algebraic extension is an extension that is generated by algebraic elements. For example, \Q(\sqrt 2, \sqrt 3) is an algebraic extension of \Q, because \sqrt 2 and \sqrt 3 are algebraic over \Q. A simple extension is algebraic
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it is finite. This implies that an extension is algebraic if and only if it is the union of its finite subextensions, and that every finite extension is algebraic. Every field ''K'' has an algebraic closure, which is up to an isomorphism the largest extension field of ''K'' which is algebraic over ''K'', and also the smallest extension field such that every polynomial with coefficients in ''K'' has a root in it. For example, \Complex is an algebraic closure of \R, but not an algebraic closure of \Q, as it is not algebraic over \Q (for example is not algebraic over \Q).


Transcendental extension

Given a field extension L/K, a subset ''S'' of ''L'' is called algebraically independent over ''K'' if no non-trivial polynomial relation with coefficients in ''K'' exists among the elements of ''S''. The largest cardinality of an algebraically independent set is called the transcendence degree of ''L''/''K''. It is always possible to find a set ''S'', algebraically independent over ''K'', such that ''L''/''K''(''S'') is algebraic. Such a set ''S'' is called a transcendence basis of ''L''/''K''. All transcendence bases have the same cardinality, equal to the transcendence degree of the extension. An extension L/K is said to be if and only if there exists a transcendence basis ''S'' of L/K such that ''L'' = ''K''(''S''). Such an extension has the property that all elements of ''L'' except those of ''K'' are transcendental over ''K'', but, however, there are extensions with this property which are not purely transcendental—a class of such extensions take the form ''L''/''K'' where both ''L'' and ''K'' are algebraically closed. If ''L''/''K'' is purely transcendental and ''S'' is a transcendence basis of the extension, it doesn't necessarily follow that ''L'' = ''K''(''S''). On the opposite, even when one knows a transcendence basis, it may be difficult to decide whether the extension is purely separable, and if it is so, it may be difficult to find a transcendence basis ''S'' such that ''L'' = ''K''(''S''). For example, consider the extension \Q(x, y)/\Q, where x is transcendental over \Q, and y is a
root In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
of the equation y^2-x^3=0. Such an extension can be defined as \Q(X) \langle Y^2-X^3\rangle, in which x and y are the equivalence classes of X and Y. Obviously, the singleton set \ is transcendental over \Q and the extension \Q(x, y)/\Q(x) is algebraic; hence \ is a transcendence basis that does not generates the extension \Q(x, y)/\Q(x). Similarly, \ is a transcendence basis that does not generates the whole extension. However the extension is purely transcendental since, if one set t=y/x, one has x=t^2 and y=t^3, and thus t generates the whole extension. Purely transcendental extensions of an algebraically closed field occur as function fields of rational varieties. The problem of finding a rational parametrization of a rational variety is equivalent with the problem of finding a transcendence basis that generates the whole extension.


Normal, separable and Galois extensions

An algebraic extension L/K is called normal if every irreducible polynomial in ''K'' 'X''that has a root in ''L'' completely factors into linear factors over ''L''. Every algebraic extension ''F''/''K'' admits a normal closure ''L'', which is an extension field of ''F'' such that L/K is normal and which is minimal with this property. An algebraic extension L/K is called separable if the minimal polynomial of every element of ''L'' over ''K'' is separable, i.e., has no repeated roots in an algebraic closure over ''K''. A Galois extension is a field extension that is both normal and separable. A consequence of the primitive element theorem states that every finite separable extension has a primitive element (i.e. is simple). Given any field extension L/K, we can consider its automorphism group \text(L/K), consisting of all field automorphisms ''α'': ''L'' → ''L'' with ''α''(''x'') = ''x'' for all ''x'' in ''K''. When the extension is Galois this automorphism group is called the Galois group of the extension. Extensions whose Galois group is abelian are called abelian extensions. For a given field extension L/K, one is often interested in the intermediate fields ''F'' (subfields of ''L'' that contain ''K''). The significance of Galois extensions and Galois groups is that they allow a complete description of the intermediate fields: there is a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
between the intermediate fields and the
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
s of the Galois group, described by the
fundamental theorem of Galois theory In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most bas ...
.


Generalizations

Field extensions can be generalized to ring extensions which consist of a ring and one of its subrings. A closer non-commutative analog are central simple algebras (CSAs) – ring extensions over a field, which are simple algebra (no non-trivial 2-sided ideals, just as for a field) and where the center of the ring is exactly the field. For example, the only finite field extension of the real numbers is the complex numbers, while the quaternions are a central simple algebra over the reals, and all CSAs over the reals are Brauer equivalent to the reals or the quaternions. CSAs can be further generalized to Azumaya algebras, where the base field is replaced by a commutative
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
.


Extension of scalars

Given a field extension, one can " extend scalars" on associated algebraic objects. For example, given a real vector space, one can produce a complex vector space via complexification. In addition to vector spaces, one can perform extension of scalars for associative algebras defined over the field, such as polynomials or group algebras and the associated
group representation In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used ...
s. Extension of scalars of polynomials is often used implicitly, by just considering the coefficients as being elements of a larger field, but may also be considered more formally. Extension of scalars has numerous applications, as discussed in extension of scalars: applications.


See also

* Field theory * Glossary of field theory * Tower of fields * Primary extension * Regular extension


Notes


References

* * * *


External links

* {{springer, title=Extension of a field, id=p/e036970