HOME





Poisson Trial
In survey methodology, Poisson sampling (sometimes denoted as ''PO sampling'') is a sampling process where each element of the population Population is a set of humans or other organisms in a given region or area. Governments conduct a census to quantify the resident population size within a given jurisdiction. The term is also applied to non-human animals, microorganisms, and pl ... is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample.Ghosh, Dhiren, and Andrew Vogt. "Sampling methods related to Bernoulli and Poisson Sampling." Proceedings of the Joint Statistical Meetings. American Statistical Association Alexandria, VA, 2002(pdf)/ref> Each element of the population may have a different probability of being included in the sample (\pi_i). The probability of being included in a sample during the drawing of a single sample is denoted as the ''first-order inclusion probability'' of that element (p_i). If all first-or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Survey Methodology
Survey methodology is "the study of survey methods". As a field of applied statistics concentrating on human-research surveys, survey methodology studies the sampling of individual units from a population and associated techniques of survey data collection, such as questionnaire construction and methods for improving the number and accuracy of responses to surveys. Survey methodology targets instruments or procedures that ask one or more questions that may or may not be answered. Researchers carry out statistical surveys with a view towards making statistical inferences about the population being studied; such inferences depend strongly on the survey questions used. Polls about public opinion, public-health surveys, market-research surveys, government surveys and censuses all exemplify quantitative research that uses survey methodology to answer questions about a population. Although censuses do not include a "sample", they do include other aspects of survey methodology, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sampling (statistics)
In this statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a population (statistics), statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population (in many cases, collecting the whole population is impossible, like getting sizes of all stars in the universe), and thus, it can provide insights in cases where it is infeasible to measure an entire population. Each observation measures one or more properties (such as weight, location, colour or mass) of independent objects or individuals. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly in stratified samplin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Population
In statistics, a population is a set of similar items or events which is of interest for some question or experiment. A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of objects conceived as a generalization from experience (e.g. the set of all possible hands in a game of poker). A population with finitely many values N in the support of the population distribution is a finite population with population size N. A population with infinitely many values in the support is called infinite population. A common aim of statistical analysis is to produce information about some chosen population. In statistical inference, a subset of the population (a statistical '' sample'') is chosen to represent the population in a statistical analysis. Moreover, the statistical sample must be unbiased and accurately model the population. The ratio of the size of this statistical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Independence
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Trial
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his ' (1713). The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process. Since a Bernoulli trial has only two possible outcomes, it can be framed as a "yes or no" question. For example: *Is the top card of a shuffled deck an ace? *Was the newborn child a girl? (See human sex ratio.) Success and failure are in this context labels for the two outcomes, and should not be construed literally or as value judgments. More generally, given any probability space, for any event (set of outcomes), one can define a Bernoulli trial according to whether the event occurred or not (event or c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inclusion Probability
In statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the drawing of a single sample. For example, in simple random sampling the probability of a particular unit i to be selected into the sample is :p_ = \frac = \frac where n is the sample size and N is the population size. Each element of the population may have a different probability of being included in the sample. The inclusion probability is also termed the "first-order inclusion probability" to distinguish it from the "second-order inclusion probability", i.e. the probability of including a pair of elements. Generally, the first-order inclusion probability of the ''i''th element of the population is denoted by the symbol π''i'' and the second-order inclusion probability that a pair consisting of the ''i''th and ''j''th element of the popul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Sampling
In the theory of finite population sampling, Bernoulli sampling is a sampling process where each element of the statistical population, population is subjected to an statistical independence, independent Bernoulli trial which determines whether the element becomes part of the sample. An essential property of Bernoulli sampling is that all elements of the population have equal probability of being included in the sample. Bernoulli sampling is therefore a special case of Poisson sampling. In Poisson sampling each element of the population may have a different probability of being included in the sample. In Bernoulli sampling, the probability is equal for all the elements. Because each element of the population is considered separately for the sample, the sample size is not fixed but rather follows a binomial distribution. Example The most basic Bernoulli method generates ''n'' random variates to extract a sample from a population of ''n'' items. Suppose you want to extract a given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Distribution
In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1 (e.g., number of events in a given area or volume). The Poisson distribution is named after French mathematician Siméon Denis Poisson. It plays an important role for discrete-stable distributions. Under a Poisson distribution with the expectation of ''λ'' events in a given interval, the probability of ''k'' events in the same interval is: :\frac . For instance, consider a call center which receives an average of ''λ ='' 3 calls per minute at all times of day. If the calls are independent, receiving one does not change the probability of when the next on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Process
In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of Point (geometry), points randomly located on a Space (mathematics), mathematical space with the essential feature that the points occur independently of one another. The process's name derives from the fact that the number of points in any given finite region follows a Poisson distribution. The process and the distribution are named after French mathematician Siméon Denis Poisson. The process itself was discovered independently and repeatedly in several settings, including experiments on radioactive decay, telephone call arrivals and actuarial science. This point process is used as a mathematical model for seemingly random processes in numerous disciplines including astronomy,G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy. ''Journal of st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sampling Design
In the theory of finite population sampling, a sampling design specifies for every possible sample its probability of being drawn. Mathematical formulation Mathematically, a sampling design is denoted by the function P(S) which gives the probability of drawing a sample S. An example of a sampling design During Bernoulli sampling, P(S) is given by : P(S) = q^ \times (1-q)^ where for each element q is the probability of being included in the sample and N_\text(S) is the total number of elements in the sample S and N_\text is the total number of elements in the population (before sampling commenced). Sample design for managerial research In business research, companies must often generate samples of customers, clients, employees, and so forth to gather their opinions. Sample design is also a critical component of marketing research and employee research for many organizations. During sample design, firms must answer questions such as: * What is the relevant population, sampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]