Normal Extension
In abstract algebra, a normal extension is an Algebraic extension, algebraic field extension ''L''/''K'' for which every irreducible polynomial over ''K'' that has a zero of a function, root in ''L'' splits into linear factors over ''L''. This is one of the conditions for an algebraic extension to be a Galois extension. Nicolas Bourbaki, Bourbaki calls such an extension a quasi-Galois extension. For Finite extension, finite extensions, a normal extension is identical to a splitting field. Definition Let ''L/K'' be an algebraic extension (i.e., ''L'' is an algebraic extension of ''K''), such that L\subseteq \overline (i.e., ''L'' is contained in an algebraic closure of ''K''). Then the following conditions, any of which can be regarded as a definition of normal extension, are equivalent: * Every Embedding (field theory), embedding of ''L'' in \overline over ''K'' induces an automorphism of ''L''. * ''L'' is the splitting field of a family of polynomials in K[X]. * Every irreducibl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In an algebraic structure such as a group, a ring, or vector space, an ''automorphism'' is simply a bijective homomorphism of an object into itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) More generally, for an object in some category, an automorphism is a morphism of the object to itself that has an inverse morphism; that is, a morphism f: X\to X is an automorphism if there is a morphism g: X\to X such that g\circ f= f\circ g = \operatorname _X, where \operatorname _X is the identity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory—indeed in any area where fields appear prominently. Definition and notation Suppose that ''E''/''F'' is a field extension. Then ''E'' may be considered as a vector space over ''F'' (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by 'E'':''F'' The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension ''E''/''F'' is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements). The degree should not be confused with the transcendence degree of a field; for example, the field Q(' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Up To Isomorphism
Two mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, " is unique up to " means that all objects under consideration are in the same equivalence class with respect to the relation . Moreover, the equivalence relation is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation that relates two lists if one can be obtained by reordering ( permuting) the other. As another example, the statement "the solution to an indefinite integral is , up to addition of a constant" tacit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Root Of Unity
In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. It is occasionally called a de Moivre number after French mathematician Abraham de Moivre. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation z^n = 1. Unless otherwise specified, the roots ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number
In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is an algebraic number, because it is a root of the polynomial X^2 - X - 1, i.e., a solution of the equation x^2 - x - 1 = 0, and the complex number 1 + i is algebraic as a root of X^4 + 4. Algebraic numbers include all integers, rational numbers, and nth root, ''n''-th roots of integers. Algebraic complex numbers are closed under addition, subtraction, multiplication and division, and hence form a field (mathematics), field, denoted \overline. The set of algebraic real numbers \overline \cap \R is also a field. Numbers which are not algebraic are called transcendental number, transcendental and include pi, and . There are countable set, countably many algebraic numbers, hence almost all real (or complex) numbers (in the sense of Lebesgue ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimal Polynomial (field Theory)
In field theory, a branch of mathematics, the minimal polynomial of an element of an extension field of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the smaller field, such that is a root of the polynomial. If the minimal polynomial of exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1. More formally, a minimal polynomial is defined relative to a field extension and an element of the extension field . The minimal polynomial of an element, if it exists, is a member of , the ring of polynomials in the variable with coefficients in . Given an element of , let be the set of all polynomials in such that . The element is called a root or zero of each polynomial in More specifically, ''J''''α'' is the kernel of the ring homomorphism from ''F'' 'x''to ''E'' which sends polynomials ''g'' to their value ''g''(''α'') at the element ''α''. Because it is the kernel of a ring homom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compositum
In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field. Compositum of fields First, one defines the notion of the compositum of fields. This construction occurs frequently in field theory. The idea behind the compositum is to make the smallest field containing two other fields. In order to formally define the compositum, one must first specify a tower of fields. Let ''k'' be a field and ''L'' and ''K'' be two extensions of ''k''. The compositum, denoted ''K.L'', is defined to be K.L = k(K \cup L) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Embedding (field Theory)
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Extension
In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, every element of is a root of a non-zero polynomial with coefficients in . A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field \Q of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory. Another example of a common algebraic extension is the extension \Complex/\R of the real numbers by the complex numbers. Some properties All transcendental extensions are of infinite degree. This in turn implies that all finite extensions are algebraic. The converse is not true however: there are infinite extensions which are algebraic. For instance, the field of all algebraic numbers is an infinite algebraic extension of the rational ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Splitting Field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polynomial ''p''(''X'') over a field ''K'' is a field extension ''L'' of ''K'' over which ''p'' factors into linear factors :p(X) = c \prod_^ (X - a_i) where c \in K and for each i we have X - a_i \in L /math> with ''ai'' not necessarily distinct and such that the roots ''ai'' generate ''L'' over ''K''. The extension ''L'' is then an extension of minimal degree over ''K'' in which ''p'' splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of ''p'' (if we assume it is separable). A splitting field of a set ''P'' of polynomials is the smallest field over which each of the polynomials in ''P'' splits. Properties An extension ''L'' th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |