Matroid Girth
In matroid theory, a mathematical discipline, the girth of a matroid is the size of its smallest circuit or dependent set. The cogirth of a matroid is the girth of its dual matroid. Matroid girth generalizes the notion of the shortest cycle in a graph, the edge connectivity of a graph, Hall sets in bipartite graphs, even sets in families of sets, and general position of point sets. It is hard to compute, but fixed-parameter tractable for linear matroids when parameterized both by the matroid rank and the field size of a linear representation. Examples The "girth" terminology generalizes the use of girth in graph theory, meaning the length of the shortest cycle in a graph: the girth of a graphic matroid is the same as the girth of its underlying graph.. The girth of other classes of matroids also corresponds to important combinatorial problems. For instance, the girth of a co-graphic matroid (or the cogirth of a graphic matroid) equals the edge connectivity of the underlying graph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid Theory
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid Representation
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra. A linear matroid is a matroid that has a representation, and an ''F''-linear matroid (for a field ''F'') is a matroid that has a representation using a vector space over ''F''. Matroid representation theory studies the existence of representations and the properties of linear matroids. Definitions A (finite) matroid (E,\mathcal) is defined by a finite set E (the elements of the matroid) and a non-empty family \mathcal of the subsets of E, called the independent sets of the matroid. It is required to satisfy the properties that every subset of an independent set is itself independent, and that if one ind ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oriented Matroid
An oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary (i.e., non-oriented) matroid abstracts the dependence properties that are common both to graphs, which are not necessarily ''directed'', and to arrangements of vectors over fields, which are not necessarily ''ordered''. All oriented matroids have an underlying matroid. Thus, results on ordinary matroids can be applied to oriented matroids. However, the converse is false; some matroids cannot become an oriented matroid by ''orienting'' an underlying structure (e.g., circuits or independent sets). The distinction between matroids and oriented matroids is discussed further below. Matroids are often useful in areas such as dimension theory and algorithms. Because of an oriented matroid's inclusion of additional details about the ''oriented'' nature of a structure, its ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SIAM Journal On Computing
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References External linksSIAM Journal on Computing on DBL ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid Oracle
In mathematics and computer science, a matroid oracle is a subroutine through which an algorithm may access a matroid, an abstract combinatorial structure that can be used to describe the linear dependencies between vectors in a vector space or the spanning trees of a graph, among other applications. The most commonly used oracle of this type is an independence oracle, a subroutine for testing whether a set of matroid elements is independent. Several other types of oracle have also been used; some of them have been shown to be weaker than independence oracles, some stronger, and some equivalent in computational power.; ; . Many algorithms that perform computations on matroids have been designed to take an oracle as input, allowing them to run efficiently without change on many different kinds of matroids, and without additional assumptions about what kind of matroid they are using. For instance, given an independence oracle for any matroid, it is possible to find the minimum weigh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Vardy
Alexander Vardy (, ; 12 November 1963 - 11 March 2022) was a Russian-born and Israeli-educated electrical engineer known for his expertise in coding theory.. He held the Jack Keil Wolf Endowed Chair in Electrical Engineering at the University of California, San Diego.. The Parvaresh–Vardy codes are named after him. Vardy was born in Moscow in 1963.. He graduated from the Technion – Israel Institute of Technology in 1985, and completed his Ph.D. in 1991 at Tel Aviv University. During his graduate studies, he also worked on electronic countermeasures for the Israeli Air Force, attaining the rank of Israel Defense Forces ranks, Seren (Captain). He became a researcher at the IBM Almaden Research Center for two years, then became a faculty member of the University of Illinois at Urbana–Champaign before moving to University of California, San Diego, UCSD in 1996. He served as editor-in-chief of the ''IEEE Transactions on Information Theory'' from 1998 to 2001. In 2004 a paper by Ra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP-hard
In computational complexity theory, a computational problem ''H'' is called NP-hard if, for every problem ''L'' which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from ''L'' to ''H''. That is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP. As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. A simple example of an NP-hard problem is the subset sum problem. Informally, if ''H'' is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Matroid
In matroid theory, a binary matroid is a matroid that can be represented over the finite field GF(2).. That is, up to isomorphism, they are the matroids whose elements are the columns of a (0,1)-matrix and whose sets of elements are independent if and only if the corresponding columns are linearly independent in GF(2). Alternative characterizations A matroid M is binary if and only if *It is the matroid defined from a symmetric (0,1)-matrix. *For every set \mathcal of circuits of the matroid, the symmetric difference of the circuits in \mathcal can be represented as a disjoint union of circuits., Theorem 10.1.3, p. 162. *For every pair of circuits of the matroid, their symmetric difference contains another circuit. *For every pair C,D where C is a circuit of M and D is a circuit of the dual matroid of M, , C\cap D, is an even number.. *For every pair B,C where B is a basis of M and C is a circuit of M, C is the symmetric difference of the fundamental circuits induced in B by the e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The National Academy Of Sciences Of The United States Of America
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Sciences, published since 1915, and publishes original research, scientific reviews, commentaries, and letters. According to ''Journal Citation Reports'', the journal has a 2022 impact factor of 9.4. ''PNAS'' is the second most cited scientific journal, with more than 1.9 million cumulative citations from 2008 to 2018. In the past, ''PNAS'' has been described variously as "prestigious", "sedate", "renowned" and "high impact". ''PNAS'' is a delayed open-access journal, with an embargo period of six months that can be bypassed for an author fee ( hybrid open access). Since September 2017, open access articles are published under a Creative Commons license. Since January 2019, ''PNAS'' has been online-only, although print issues are available ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spark (mathematics)
In mathematics, more specifically in linear algebra, the spark of a m \times n matrix A is the smallest integer k such that there exists a set of k columns in A which are linearly dependent. If all the columns are linearly independent, \mathrm(A) is usually defined to be 1 more than the number of rows. The concept of matrix spark finds applications in error-correction codes, compressive sensing, and matroid theory, and provides a simple criterion for maximal sparsity of solutions to a system of linear equations. The spark of a matrix is NP-hard to compute. Definition Formally, the spark of a matrix A is defined as follows: where d is a nonzero vector and \, d\, _0 denotes its number of nonzero coefficients (\, d\, _0 is also referred to as the size of the support of a vector). Equivalently, the spark of a matrix A is the size of its smallest ''circuit'' C (a subset of column indices such that A_C x = 0 has a nonzero solution, but every subset of it does not). If all the columns ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compressed Sensing
Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal processing technique for efficiently acquiring and reconstructing a Signal (electronics), signal by finding solutions to Underdetermined system, underdetermined linear systems. This is based on the principle that, through optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Nyquist–Shannon sampling theorem. There are two conditions under which recovery is possible. The first one is sparsity, which requires the signal to be sparse in some domain. The second one is incoherence, which is applied through the isometric property, which is sufficient for sparse signals. Compressed sensing has applications in, for example, magnetic resonance imaging (MRI) where the incoherence condition is typically satisfied. Overview A common goal of the engineering field of signal processing is to reconstruct a signal from a series ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |