mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
,
subtraction
Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
,
multiplication
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental
algebraic structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
which is widely used in algebra, number theory, and many other areas of mathematics.
The best known fields are the field of rational numbers, the field of real numbers and the field of
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a f ...
s, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
.
The relation of two fields is expressed by the notion of a
field extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, this theory shows that
angle trisection
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge an ...
and
squaring the circle
Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square with the area of a circle by using only a finite number of steps with a compass and straightedge. The difficulty ...
cannot be done with a
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. Moreover, it shows that quintic equations are, in general, algebraically unsolvable.
Fields serve as foundational notions in several mathematical domains. This includes different branches of mathematical analysis, which are based on fields with additional structure. Basic theorems in analysis hinge on the structural properties of the field of real numbers. Most importantly for algebraic purposes, any field may be used as the
scalars
Scalar may refer to:
*Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers
*Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
operation
Operation or Operations may refer to:
Arts, entertainment and media
* ''Operation'' (game), a battery-operated board game that challenges dexterity
* Operation (music), a term used in musical set theory
* ''Operations'' (magazine), Multi-Man ...
s defined on that set: an addition operation written as , and a multiplication operation written as , both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an
additive inverse
In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
for all elements , and of a multiplicative inverse for every nonzero element . This allows one to also consider the so-called ''inverse'' operations of subtraction, , and division, , by defining:
:,
:.
binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, an internal binary op ...
s on called ''addition'' and ''multiplication''. A binary operation on is a mapping , that is, a correspondence that associates with each ordered pair of elements of a uniquely determined element of . The result of the addition of and is called the sum of and , and is denoted . Similarly, the result of the multiplication of and is called the product of and , and is denoted or . These operations are required to satisfy the following properties, referred to as ''
field axioms
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is wi ...
'' (in these axioms, , , and are arbitrary elements of the field ):
* Associativity of addition and multiplication: , and .
*
Commutativity
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
of addition and multiplication: , and .
* Additive and
multiplicative identity
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
: there exist two different elements and in such that and .
*
Additive inverse
In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
s: for every in , there exists an element in , denoted , called the ''additive inverse'' of , such that .
* Multiplicative inverses: for every in , there exists an element in , denoted by or , called the ''multiplicative inverse'' of , such that .
* Distributivity of multiplication over addition: .
This may be summarized by saying: a field has two operations, called addition and multiplication; it is an abelian group under addition with 0 as the additive identity; the nonzero elements are an abelian group under multiplication with 1 as the multiplicative identity; and multiplication distributes over addition.
Even more summarized: a field is a
commutative ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
where and all nonzero elements are invertible under multiplication.
Alternative definition
Fields can also be defined in different, but equivalent ways. One can alternatively define a field by four binary operations (addition, subtraction, multiplication, and division) and their required properties. Division by zero is, by definition, excluded. In order to avoid existential quantifiers, fields can be defined by two binary operations (addition and multiplication), two unary operations (yielding the additive and multiplicative inverses respectively), and two nullary operations (the constants and ). These operations are then subject to the conditions above. Avoiding existential quantifiers is important in constructive mathematics and
computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
. One may equivalently define a field by the same two binary operations, one unary operation (the multiplicative inverse), and two constants and , since and .The a priori twofold use of the symbol "−" for denoting one part of a constant and for the additive inverses is justified by this latter condition.
Examples
Rational numbers
Rational numbers have been widely used a long time before the elaboration of the concept of field.
They are numbers that can be written as fractions
, where and are integers, and . The additive inverse of such a fraction is , and the multiplicative inverse (provided that ) is , which can be seen as follows:
:
The abstractly required field axioms reduce to standard properties of rational numbers. For example, the law of distributivity can be proven as follows:
:
Real and complex numbers
The real numbers , with the usual operations of addition and multiplication, also form a field. The
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s consist of expressions
: with real,
where is the imaginary unit, i.e., a (non-real) number satisfying .
Addition and multiplication of real numbers are defined in such a way that expressions of this type satisfy all field axioms and thus hold for . For example, the distributive law enforces
:
It is immediate that this is again an expression of the above type, and so the complex numbers form a field. Complex numbers can be geometrically represented as points in the plane, with
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
given by the real numbers of their describing expression, or as the arrows from the origin to these points, specified by their length and an angle enclosed with some distinct direction. Addition then corresponds to combining the arrows to the intuitive parallelogram (adding the Cartesian coordinates), and the multiplication is – less intuitively – combining rotating and scaling of the arrows (adding the angles and multiplying the lengths). The fields of real and complex numbers are used throughout mathematics, physics, engineering, statistics, and many other scientific disciplines.
Constructible numbers
In antiquity, several geometric problems concerned the (in)feasibility of constructing certain numbers with
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. For example, it was unknown to the Greeks that it is, in general, impossible to trisect a given angle in this way. These problems can be settled using the field of
constructible numbers
In geometry and algebra, a real number r is constructible if and only if, given a line segment of unit length, a line segment of length , r, can be constructed with compass and straightedge in a finite number of steps. Equivalently, r is c ...
. Real constructible numbers are, by definition, lengths of line segments that can be constructed from the points 0 and 1 in finitely many steps using only compass and
straightedge
A straightedge or straight edge is a tool used for drawing straight lines, or checking their straightness. If it has equally spaced markings along its length, it is usually called a ruler.
Straightedges are used in the automotive service and ma ...
. These numbers, endowed with the field operations of real numbers, restricted to the constructible numbers, form a field, which properly includes the field of rational numbers. The illustration shows the construction of square roots of constructible numbers, not necessarily contained within . Using the labeling in the illustration, construct the segments , , and a semicircle over (center at the midpoint ), which intersects the perpendicular line through in a point , at a distance of exactly from when has length one.
Not all real numbers are constructible. It can be shown that is not a constructible number, which implies that it is impossible to construct with compass and straightedge the length of the side of a cube with volume 2, another problem posed by the ancient Greeks.
A field with four elements
In addition to familiar number systems such as the rationals, there are other, less immediate examples of fields. The following example is a field consisting of four elements called , , , and . The notation is chosen such that plays the role of the additive identity element (denoted 0 in the axioms above), and is the multiplicative identity (denoted 1 in the axioms above). The field axioms can be verified by using some more field theory, or by direct computation. For example,
: , which equals , as required by the distributivity.
This field is called a finite field with four elements, and is denoted or . The
subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
consisting of and (highlighted in red in the tables at the right) is also a field, known as the '' binary field'' or . In the context of
computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
and
Boolean algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas ...
, and are often denoted respectively by ''false'' and ''true'', and the addition is then denoted
XOR
Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false).
It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
(exclusive or). In other words, the structure of the binary field is the basic structure that allows computing with
bit
The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented a ...
s.
Elementary notions
In this section, denotes an arbitrary field and and are arbitrary
elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
of .
Consequences of the definition
One has and . In particular, one may deduce the additive inverse of every element as soon as one knows .
If then or must be 0, since, if , then
. This means that every field is an integral domain.
In addition, the following properties are true for any elements and :
:
:
:
:
: if
The additive and the multiplicative group of a field
The axioms of a field imply that it is an abelian group under addition. This group is called the additive group of the field, and is sometimes denoted by when denoting it simply as could be confusing.
Similarly, the ''nonzero'' elements of form an abelian group under multiplication, called the multiplicative group, and denoted by or just or .
A field may thus be defined as set equipped with two operations denoted as an addition and a multiplication such that is an abelian group under addition, is an abelian group under multiplication (where 0 is the identity element of the addition), and multiplication is distributive over addition.Equivalently, a field is an
algebraic structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
of type , such that is not defined, and
are abelian groups, and ⋅ is distributive over +. Some elementary statements about fields can therefore be obtained by applying general facts of groups. For example, the additive and multiplicative inverses and are uniquely determined by .
The requirement follows, because 1 is the identity element of a group that does not contain 0. Thus, the trivial ring, consisting of a single element, is not a field.
Every finite subgroup of the multiplicative group of a field is cyclic (see ).
Characteristic
In addition to the multiplication of two elements of ''F'', it is possible to define the product of an arbitrary element of by a positive integer to be the -fold sum
: (which is an element of .)
If there is no positive integer such that
:,
then is said to have characteristic 0. For example, the field of rational numbers has characteristic 0 since no positive integer is zero. Otherwise, if there ''is'' a positive integer satisfying this equation, the smallest such positive integer can be shown to be a prime number. It is usually denoted by and the field is said to have characteristic then.
For example, the field has characteristic 2 since (in the notation of the above addition table) .
If has characteristic , then for all in . This implies that
:,
since all other
binomial coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
s appearing in the binomial formula are divisible by . Here, ( factors) is the -th power, i.e., the -fold product of the element . Therefore, the
Frobenius map
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphi ...
:
is compatible with the addition in (and also with the multiplication), and is therefore a field homomorphism. The existence of this homomorphism makes fields in characteristic quite different from fields of characteristic 0.
Subfields and prime fields
A '' subfield'' of a field is a subset of that is a field with respect to the field operations of . Equivalently is a subset of that contains , and is closed under addition, multiplication, additive inverse and multiplicative inverse of a nonzero element. This means that , that for all both and are in , and that for all in , both and are in .
Field homomorphism
Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.)
Definition of a field
A field is a commutative ri ...
s are maps between two fields such that , , and , where and are arbitrary elements of . All field homomorphisms are
injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
. If is also
surjective
In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
, it is called an isomorphism (or the fields and are called isomorphic).
A field is called a prime field if it has no proper (i.e., strictly smaller) subfields. Any field contains a prime field. If the characteristic of is (a prime number), the prime field is isomorphic to the finite field introduced below. Otherwise the prime field is isomorphic to .
Finite fields
''Finite fields'' (also called ''Galois fields'') are fields with finitely many elements, whose number is also referred to as the order of the field. The above introductory example is a field with four elements. Its subfield is the smallest field, because by definition a field has at least two distinct elements .
The simplest finite fields, with prime order, are most directly accessible using modular arithmetic. For a fixed positive integer , arithmetic "modulo " means to work with the numbers
:
The addition and multiplication on this set are done by performing the operation in question in the set of integers, dividing by and taking the remainder as result. This construction yields a field precisely if is a prime number. For example, taking the prime results in the above-mentioned field . For and more generally, for any
composite number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
(i.e., any number which can be expressed as a product of two strictly smaller natural numbers), is not a field: the product of two non-zero elements is zero since in , which, as was explained above, prevents from being a field. The field with elements ( being prime) constructed in this way is usually denoted by .
Every finite field has elements, where is prime and . This statement holds since may be viewed as a vector space over its prime field. The dimension of this vector space is necessarily finite, say , which implies the asserted statement.
A field with elements can be constructed as the splitting field of the polynomial
:.
Such a splitting field is an extension of in which the polynomial has zeros. This means has as many zeros as possible since the
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathemati ...
of is . For , it can be checked case by case using the above multiplication table that all four elements of satisfy the equation , so they are zeros of . By contrast, in , has only two zeros (namely 0 and 1), so does not split into linear factors in this smaller field. Elaborating further on basic field-theoretic notions, it can be shown that two finite fields with the same order are isomorphic. It is thus customary to speak of ''the'' finite field with elements, denoted by or .
History
Historically, three algebraic disciplines led to the concept of a field: the question of solving polynomial equations,
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, and
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
. A first step towards the notion of a field was made in 1770 by
Joseph-Louis Lagrange
Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangiacubic polynomial in the expression
:
(with being a third root of unity) only yields two values. This way, Lagrange conceptually explained the classical solution method of Scipione del Ferro and François Viète, which proceeds by reducing a cubic equation for an unknown to a quadratic equation for . Together with a similar observation for equations of degree 4, Lagrange thus linked what eventually became the concept of fields and the concept of groups. Vandermonde, also in 1770, and to a fuller extent,
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
, in his '' Disquisitiones Arithmeticae'' (1801), studied the equation
:
for a prime and, again using modern language, the resulting cyclic Galois group. Gauss deduced that a regular -gon can be constructed if . Building on Lagrange's work,
Paolo Ruffini
Paolo Ruffini ( Valentano, 22 September 1765 – Modena, 10 May 1822) was an Italian mathematician and philosopher.
Education and Career
By 1788 he had earned university degrees in philosophy, medicine/surgery and mathematics. His works incl ...
claimed (1799) that quintic equations (polynomial equations of degree 5) cannot be solved algebraically; however, his arguments were flawed. These gaps were filled by Niels Henrik Abel in 1824. Évariste Galois, in 1832, devised necessary and sufficient criteria for a polynomial equation to be algebraically solvable, thus establishing in effect what is known as Galois theory today. Both Abel and Galois worked with what is today called an
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a f ...
, but conceived neither an explicit notion of a field, nor of a group.
In 1871
Richard Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...
introduced, for a set of real or complex numbers that is closed under the four arithmetic operations, the German word ''Körper'', which means "body" or "corpus" (to suggest an organically closed entity). The English term "field" was introduced by .
In 1881 Leopold Kronecker defined what he called a ''domain of rationality'', which is a field of rational fractions in modern terms. Kronecker's notion did not cover the field of all algebraic numbers (which is a field in Dedekind's sense), but on the other hand was more abstract than Dedekind's in that it made no specific assumption on the nature of the elements of a field. Kronecker interpreted a field such as abstractly as the rational function field . Prior to this, examples of transcendental numbers were known since Joseph Liouville's work in 1844, until Charles Hermite (1873) and Ferdinand von Lindemann (1882) proved the transcendence of and , respectively.
The first clear definition of an abstract field is due to . In particular,
Heinrich Martin Weber
Heinrich Martin Weber (5 March 1842, Heidelberg, Germany – 17 May 1913, Straßburg, Alsace-Lorraine, German Empire, now Strasbourg, France) was a German mathematician. Weber's main work was in algebra, number theory, and analysis. He is ...
's notion included the field F''p''. Giuseppe Veronese (1891) studied the field of formal power series, which led to introduce the field of ''p''-adic numbers. synthesized the knowledge of abstract field theory accumulated so far. He axiomatically studied the properties of fields and defined many important field-theoretic concepts. The majority of the theorems mentioned in the sections Galois theory, Constructing fields and Elementary notions can be found in Steinitz's work. linked the notion of orderings in a field, and thus the area of analysis, to purely algebraic properties.
Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent.
Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing lar ...
redeveloped Galois theory from 1928 through 1942, eliminating the dependency on the primitive element theorem.
Constructing fields
Constructing fields from rings
A
commutative ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
is a set, equipped with an addition and multiplication operation, satisfying all the axioms of a field, except for the existence of multiplicative inverses . For example, the integers form a commutative ring, but not a field: the reciprocal of an integer is not itself an integer, unless .
In the hierarchy of algebraic structures fields can be characterized as the commutative rings in which every nonzero element is a unit (which means every element is invertible). Similarly, fields are the commutative rings with precisely two distinct ideals, and . Fields are also precisely the commutative rings in which is the only
prime ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
.
Given a commutative ring , there are two ways to construct a field related to , i.e., two ways of modifying such that all nonzero elements become invertible: forming the field of fractions, and forming residue fields. The field of fractions of is , the rationals, while the residue fields of are the finite fields .
Field of fractions
Given an integral domain , its field of fractions is built with the fractions of two elements of exactly as Q is constructed from the integers. More precisely, the elements of are the fractions where and are in , and . Two fractions and are equal if and only if . The operation on the fractions work exactly as for rational numbers. For example,
:
It is straightforward to show that, if the ring is an integral domain, the set of the fractions form a field.
The field of the rational fractions over a field (or an integral domain) is the field of fractions of the polynomial ring . The field of
Laurent series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion c ...
:
over a field is the field of fractions of the ring of
formal power series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sum ...
(in which ). Since any Laurent series is a fraction of a power series divided by a power of (as opposed to an arbitrary power series), the representation of fractions is less important in this situation, though.
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathemati ...
. This yields a field
:
This field contains an element (namely the residue class of ) which satisfies the equation
:.
For example, is obtained from by adjoining the imaginary unit symbol , which satisfies , where . Moreover, is irreducible over , which implies that the map that sends a polynomial to yields an isomorphism
:
Constructing fields within a bigger field
Fields can be constructed inside a given bigger container field. Suppose given a field , and a field containing as a subfield. For any element of , there is a smallest subfield of containing and , called the subfield of ''F'' generated by and denoted . The passage from to is referred to by '' adjoining an element'' to . More generally, for a subset , there is a minimal subfield of containing and , denoted by .
The
compositum
In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime su ...
of two subfields and of some field is the smallest subfield of containing both and The compositum can be used to construct the biggest subfield of satisfying a certain property, for example the biggest subfield of , which is, in the language introduced below, algebraic over .Further examples include the maximal unramified extension or the maximal abelian extension within .
Field extensions
The notion of a subfield can also be regarded from the opposite point of view, by referring to being a ''
field extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
'' (or just extension) of , denoted by
:,
and read " over ".
A basic datum of a field extension is its
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathemati ...
, i.e., the dimension of as an -vector space. It satisfies the formula
:.
Extensions whose degree is finite are referred to as finite extensions. The extensions and are of degree 2, whereas is an infinite extension.
Algebraic extensions
A pivotal notion in the study of field extensions are algebraic elements. An element is ''algebraic'' over if it is a root of a polynomial with
coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s in , that is, if it satisfies a polynomial equation
:,
with in , and .
For example, the imaginary unit in is algebraic over , and even over , since it satisfies the equation
:.
A field extension in which every element of is algebraic over is called an algebraic extension. Any finite extension is necessarily algebraic, as can be deduced from the above multiplicativity formula.
The subfield generated by an element , as above, is an algebraic extension of if and only if is an algebraic element. That is to say, if is algebraic, all other elements of are necessarily algebraic as well. Moreover, the degree of the extension , i.e., the dimension of as an -vector space, equals the minimal degree such that there is a polynomial equation involving , as above. If this degree is , then the elements of have the form
:
For example, the field of Gaussian rationals is the subfield of consisting of all numbers of the form where both and are rational numbers: summands of the form (and similarly for higher exponents) don't have to be considered here, since can be simplified to .
indeterminate
Indeterminate may refer to:
In mathematics
* Indeterminate (variable), a symbol that is treated as a variable
* Indeterminate system, a system of simultaneous equations that has more than one solution
* Indeterminate equation, an equation that ha ...
, is not an algebraic extension of since there is no polynomial equation with coefficients in whose zero is . Elements, such as , which are not algebraic are called
transcendental
Transcendence, transcendent, or transcendental may refer to:
Mathematics
* Transcendental number, a number that is not the root of any polynomial with rational coefficients
* Algebraic element or transcendental element, an element of a field exten ...
. Informally speaking, the indeterminate and its powers do not interact with elements of . A similar construction can be carried out with a set of indeterminates, instead of just one.
Once again, the field extension discussed above is a key example: if is not algebraic (i.e., is not a root of a polynomial with coefficients in ), then is isomorphic to . This isomorphism is obtained by substituting to in rational fractions.
A subset of a field is a
transcendence basis
In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset o ...
if it is algebraically independent (don't satisfy any polynomial relations) over and if is an algebraic extension of . Any field extension has a transcendence basis. Thus, field extensions can be split into ones of the form ( purely transcendental extensions) and algebraic extensions.
Closure operations
A field is algebraically closed if it does not have any strictly bigger algebraic extensions or, equivalently, if any polynomial equation
:, with coefficients ,
has a solution . By the fundamental theorem of algebra, is algebraically closed, i.e., ''any'' polynomial equation with complex coefficients has a complex solution. The rational and the real numbers are ''not'' algebraically closed since the equation
:
does not have any rational or real solution. A field containing is called an '' algebraic closure'' of if it is algebraic over (roughly speaking, not too big compared to ) and is algebraically closed (big enough to contain solutions of all polynomial equations).
By the above, is an algebraic closure of . The situation that the algebraic closure is a finite extension of the field is quite special: by the
Artin-Schreier theorem
In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.
Def ...
, the degree of this extension is necessarily 2, and is elementarily equivalent to . Such fields are also known as real closed fields.
Any field has an algebraic closure, which is moreover unique up to (non-unique) isomorphism. It is commonly referred to as ''the'' algebraic closure and denoted . For example, the algebraic closure of is called the field of
algebraic number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s. The field is usually rather implicit since its construction requires the ultrafilter lemma, a set-theoretic axiom that is weaker than the axiom of choice. In this regard, the algebraic closure of , is exceptionally simple. It is the union of the finite fields containing (the ones of order ). For any algebraically closed field of characteristic 0, the algebraic closure of the field of
Laurent series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion c ...
is the field of Puiseux series, obtained by adjoining roots of .
Fields with additional structure
Since fields are ubiquitous in mathematics and beyond, several refinements of the concept have been adapted to the needs of particular mathematical areas.
Ordered fields
A field ''F'' is called an ''ordered field'' if any two elements can be compared, so that and whenever and . For example, the real numbers form an ordered field, with the usual ordering . The
Artin-Schreier theorem
In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.
Def ...
states that a field can be ordered if and only if it is a formally real field, which means that any quadratic equation
:
only has the solution . The set of all possible orders on a fixed field is isomorphic to the set of ring homomorphisms from the Witt ring of
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
:4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong to a ...
s over , to .
An Archimedean field is an ordered field such that for each element there exists a finite expression
:
whose value is greater than that element, that is, there are no infinite elements. Equivalently, the field contains no infinitesimals (elements smaller than all rational numbers); or, yet equivalent, the field is isomorphic to a subfield of .
An ordered field is Dedekind-complete if all upper bounds, lower bounds (see Dedekind cut) and limits, which should exist, do exist. More formally, each
bounded subset
:''"Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). A circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary.
In mathematical analysis and related areas of mat ...
of is required to have a least upper bound. Any complete field is necessarily Archimedean, since in any non-Archimedean field there is neither a greatest infinitesimal nor a least positive rational, whence the sequence , every element of which is greater than every infinitesimal, has no limit.
Since every proper subfield of the reals also contains such gaps, is the unique complete ordered field, up to isomorphism. Several foundational results in calculus follow directly from this characterization of the reals.
The hyperreals form an ordered field that is not Archimedean. It is an extension of the reals obtained by including infinite and infinitesimal numbers. These are larger, respectively smaller than any real number. The hyperreals form the foundational basis of non-standard analysis.
Topological fields
Another refinement of the notion of a field is a topological field, in which the set is a topological space, such that all operations of the field (addition, multiplication, the maps and ) are continuous maps with respect to the topology of the space.
The topology of all the fields discussed below is induced from a metric, i.e., a function
:
that measures a ''distance'' between any two elements of .
The completion of is another field in which, informally speaking, the "gaps" in the original field are filled, if there are any. For example, any irrational number , such as , is a "gap" in the rationals in the sense that it is a real number that can be approximated arbitrarily closely by rational numbers , in the sense that distance of and given by the
absolute value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
is as small as desired.
The following table lists some examples of this construction. The fourth column shows an example of a zero sequence, i.e., a sequence whose limit (for ) is zero.
The field is used in number theory and -adic analysis. The algebraic closure carries a unique norm extending the one on , but is not complete. The completion of this algebraic closure, however, is algebraically closed. Because of its rough analogy to the complex numbers, it is sometimes called the field of complex p-adic numbers and is denoted by .
Local fields
The following topological fields are called '' local fields'':Some authors also consider the fields and to be local fields. On the other hand, these two fields, also called Archimedean local fields, share little similarity with the local fields considered here, to a point that calls them "completely anomalous".
* finite extensions of (local fields of characteristic zero)
* finite extensions of , the field of Laurent series over (local fields of characteristic ).
These two types of local fields share some fundamental similarities. In this relation, the elements and (referred to as uniformizer) correspond to each other. The first manifestation of this is at an elementary level: the elements of both fields can be expressed as power series in the uniformizer, with coefficients in . (However, since the addition in is done using carrying, which is not the case in , these fields are not isomorphic.) The following facts show that this superficial similarity goes much deeper:
* Any first-order statement that is true for almost all is also true for almost all . An application of this is the Ax-Kochen theorem describing zeros of homogeneous polynomials in .
* Tamely ramified extensions of both fields are in bijection to one another.
* Adjoining arbitrary -power roots of (in ), respectively of (in ), yields (infinite) extensions of these fields known as perfectoid fields. Strikingly, the Galois groups of these two fields are isomorphic, which is the first glimpse of a remarkable parallel between these two fields:
Differential fields
Differential fields are fields equipped with a derivation, i.e., allow to take derivatives of elements in the field. For example, the field R(''X''), together with the standard derivative of polynomials forms a differential field. These fields are central to differential Galois theory, a variant of Galois theory dealing with linear differential equations.
symmetry
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
in the arithmetic operations of addition and multiplication. An important notion in this area is that of finiteGalois extensions , which are, by definition, those that are separable and normal. The primitive element theorem shows that finite separable extensions are necessarily simple, i.e., of the form
:,
where is an irreducible polynomial (as above). For such an extension, being normal and separable means that all zeros of are contained in and that has only simple zeros. The latter condition is always satisfied if has characteristic 0.
For a finite Galois extension, the Galois group is the group of field automorphisms of that are trivial on (i.e., the
bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
s that preserve addition and multiplication and that send elements of to themselves). The importance of this group stems from the fundamental theorem of Galois theory, which constructs an explicit one-to-one correspondence between the set of subgroups of and the set of intermediate extensions of the extension . By means of this correspondence, group-theoretic properties translate into facts about fields. For example, if the Galois group of a Galois extension as above is not solvable (cannot be built from abelian groups), then the zeros of ''cannot'' be expressed in terms of addition, multiplication, and radicals, i.e., expressions involving