HOME





Mathukumalli V. Subbarao
Mathukumalli (Matukumalli) Venkata Subbarao (May 4, 1921 – February 15, 2006) was an Indo-Canadian mathematician, specialising in number theory. He was a long-time resident of Edmonton, Alberta, Canada. Subbarao was born in the small village of Yazali, Guntur, Andhra Pradesh, India. He received his master's degree from Presidency College, Chennai, Presidency College, Madras in 1941. He went on to complete a doctorate in functional analysis, advised by Ramaswamy S. Vaidyanathaswamy. He worked at Presidency College, Madras, Sri Venkateswara University, and the University of Missouri, before moving in 1963 to the University of Alberta, where he spent the rest of his professional career. In the 1960s Subbarao began to study the modular arithmetic, congruence properties of the partition function (number theory), partition function, p(n), which became one of his favourite problems. For example, he conjectured that if A and B are integers with 0 ≤ B < A, there are infinitely many n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yazali, Guntur, Andhra Pradesh
Yazali is a village in Guntur district of the Indian state of Andhra Pradesh. It is located in Karlapalem mandal of Tenali revenue division. Geography Yazali is situated to the south of the mandal headquarters, Karlapalem, at . It is spread over an area of . Demographics India census, Yazali had a population of 3,103. Males constituted 51% of the population and females 49%. Yazali has an average literacy rate of 23%, lower than the national average of 59.5%; with 35% of the males and 15% of females literate. 10% of the population is under six years of age. The majority occupation of the village is agriculture. Governance Yazali gram panchayat is the Local self-government in India, local self-government of the village. It is divided into wards, and each ward is represented by a ward member. Education As per the school information report for the academic year 2018–19, the village has 11 schools. These include 2 private and 9 District Councils of India, Zila/Mandal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Function (number Theory)
In number theory, the partition function represents the number of possible partitions of a non-negative integer . For instance, because the integer 4 has the five partitions , , , , and . No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument. The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of ends in the digit 4 or 9, the number of partitions of will be divisible by 5. Definition and examples For a positive integer , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Erdős Number
The Erdős number () describes the "collaborative distance" between mathematician Paul Erdős and another person, as measured by authorship of mathematical papers. The same principle has been applied in other fields where a particular individual has collaborated with a large and broad number of peers. Overview Paul Erdős (1913–1996) was an influential Hungarian mathematician who, in the latter part of his life, spent a great deal of time writing papers with a large number of colleagues — more than 500 — working on solutions to outstanding mathematical problems. He published more papers during his lifetime (at least 1,525) than any other mathematician in history. (Leonhard Euler published more total pages of mathematics but fewer separate papers: about 800.) Erdős spent most of his career with no permanent home or job. He traveled with everything he owned in two suitcases, and would visit mathematicians with whom he wanted to collaborate, often unexpectedly, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Divisor
Exponential may refer to any of several mathematical topics related to exponentiation, including: * Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value *Exponential discounting, a specific form of the discount function, used in the analysis of choice over time *Exponential growth, where the growth rate of a mathematical function is proportional to the function's current value *Exponential map (Riemannian geometry), in Riemannian geometry *Exponential map (Lie theory), in Lie theory *Exponential notation, also known as scientific notation, or standard form *Exponential object, in category theory *Exponential time, in complexity theory *in probability and statistics: **Exponential distribution, a family of continuous probability distributions **Exponentially modified Gaussian distribution, describes the sum of independent normal and exponential random variables **Exponential family, a parametri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6 (number), 6, 28 (number), 28, 496 (number), 496 and 8128 (number), 8128. The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors; in symbols, \sigma_1(n)=2n where \sigma_1 is the sum-of-divisors function. This definition is ancient, appearing as early as Euclid's Elements, Euclid's ''Elements'' (VII.22) where it is called (''perfect'', ''ideal'', or ''complete number''). Euclid also proved a formation rule (IX.36) whereby \frac is an even perfect number whenever q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m. General Divisors can be negative as well as positive, although often the term is restricted to posi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modular Forms
In mathematics, a modular form is a holomorphic function on the Upper half-plane#Complex plane, complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the Group action (mathematics), group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Linear Group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over \R (the set of real numbers) is the group of n\times n invertible matrices of real numbers, and is denoted by \operatorname_n(\R) or \operatorname(n,\R). More generally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]