Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m. General Divisors can be negative as well as positive, although often the term is restricted to posi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Summation
In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined. Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article. The summation of an explicit sequence is denoted as a succession of additions. For example, summation of is denoted , and results in 9, that is, . Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands. Summation of a sequence of only one summand results in the summand itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0. Very often, the elements of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Completely Multiplicative Function
In number theory, functions of positive integers which respect products are important and are called completely multiplicative functions or totally multiplicative functions. A weaker condition is also important, respecting only products of coprime numbers, and such functions are called multiplicative functions. Outside of number theory, the term "multiplicative function" is often taken to be synonymous with "completely multiplicative function" as defined in this article. Definition A completely multiplicative function (or totally multiplicative function) is an arithmetic function (that is, a function whose Domain of a function, domain is the natural numbers), such that ''f''(1) = 1 and ''f''(''ab'') = ''f''(''a'')''f''(''b'') holds ''for all'' positive integers ''a'' and ''b''. In logic notation: f(1) = 1 and \forall a, b \in \text(f), f(ab) = f(a)f(b). Without the requirement that ''f''(1) = 1, one could still have ''f''(1) = 0, but then ''f''(''a'') = 0 for all positive intege ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicative Function
In number theory, a multiplicative function is an arithmetic function f of a positive integer n with the property that f(1)=1 and f(ab) = f(a)f(b) whenever a and b are coprime. An arithmetic function is said to be completely multiplicative (or totally multiplicative) if f(1)=1 and f(ab) = f(a)f(b) holds ''for all'' positive integers a and b, even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(n): the constant function defined by 1(n)=1 * \operatorname(n): the identity function, defined by \operatorname(n)=n * \operatorname_k(n): the power functions, defined by \operatorname_k(n)=n^k for any complex number k. As special cases we have ** \operatorname_0(n)=1(n), and ** \operatorname_1(n)=\operatorname(n). * \varepsilon(n): the function defined by \varepsilon(n)=1 if n=1 and 0 otherwise; this is the unit function, so called because it is the multiplicative identity for Dirichlet convolution. Sometimes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermi–Dirac Prime
In number theory, a Fermi–Dirac prime is a prime power whose exponent is a power of two. These numbers are named from an analogy to Fermi–Dirac statistics in physics based on the fact that each integer has a unique representation as a product of Fermi–Dirac primes without repetition. Each element of the sequence of Fermi–Dirac primes is the smallest number that does not divide the product of all previous elements. Srinivasa Ramanujan used the Fermi–Dirac primes to find the smallest number whose number of divisors is a given power of two. Definition The Fermi–Dirac primes are a sequence of numbers obtained by raising a prime number to an exponent that is a power of two. That is, these are the numbers of the form p^ where p is a prime number and k is a non-negative integer. These numbers form the sequence: They can be obtained from the prime numbers by repeated squaring, and form the smallest set of numbers that includes all of the prime numbers and is closed under ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Of Two
A power of two is a number of the form where is an integer, that is, the result of exponentiation with number 2, two as the Base (exponentiation), base and integer as the exponent. In the fast-growing hierarchy, is exactly equal to f_1^n(1). In the Hardy hierarchy, is exactly equal to H_(1). Powers of two with Sign (mathematics)#Terminology for signs, non-negative exponents are integers: , , and is two multiplication, multiplied by itself times. The first ten powers of 2 for non-negative values of are: :1, 2, 4, 8, 16 (number), 16, 32 (number), 32, 64 (number), 64, 128 (number), 128, 256 (number), 256, 512 (number), 512, ... By comparison, powers of two with negative exponents are fractions: for positive integer , is one half multiplied by itself times. Thus the first few negative powers of 2 are , , , , etc. Sometimes these are called ''inverse powers of two'' because each is the multiplicative inverse of a positive power of two. Base of the binary numeral sy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primorial
In mathematics, and more particularly in number theory, primorial, denoted by "", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11= 2310. The first few primorials are: : 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690... . Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. Definition for natural numbers In general, for a positive integer , its primorial, , is th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abundancy Index
In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example. Definition An ''abundant number'' is a natural number for which the sum of divisors satisfies , or, equivalently, the sum of proper divisors (or aliquot sum) satisfies . The ''abundance'' of a natural number is the integer (equivalently, ). Examples The first 28 abundant numbers are: :12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, ... . For example, the proper divisors of 24 are 1, 2, 3, 4, 6, 8, and 12, whose sum is 36. Because 36 is greater than 24, the number 24 is abundant. Its abundance is 36 − 24 = 12. Pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aliquot Sequence
In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0. Definition and overview The aliquot sequence starting with a positive integer can be defined formally in terms of the sum-of-divisors function or the aliquot sum function in the following way: \begin s_0 &= k \\ pts_n &= s(s_) = \sigma_1(s_) - s_ \quad \text \quad s_ > 0 \\ pts_n &= 0 \quad \text \quad s_ = 0 \\ pts(0) &= \text \end If the condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these sequences are usually 0 or 6. For example, the aliquot sequence of 10 is because: \begin \sigma_1(10) -10 &= 5 + 2 + 1 = 8, \\ pt\sigma_1(8) - 8 &= 4 + 2 + 1 = 7, \\ pt\sigma_1(7) - 7 &= 1, \\ pt\sigma_1(1) - 1 &= 0. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m. General Divisors can be negative as well as positive, although often the term is restricted to posi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aliquot Sum
In number theory, the aliquot sum of a positive integer is the sum of all proper divisors of , that is, all divisors of other than itself. That is, s(n)=\sum_ d \, . It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number. Examples For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are , and 6, so the aliquot sum of 12 is 16 i.e. (). The values of for are: :0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, ... Characterization of classes of numbers The aliquot sum function can be used to characterize several notable classes of numbers: *1 is the only number whose aliquot sum is 0. *A number is prime if and only if its aliquot sum is 1. *The aliquot sum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |