HOME
*





Manin Triple
In mathematics, a Manin triple (''g'', ''p'', ''q'') consists of a Lie algebra ''g'' with a non-degenerate invariant symmetric bilinear form, together with two isotropic subalgebras ''p'' and ''q'' such that ''g'' is the direct sum of ''p'' and ''q'' as a vector space. A closely related concept is the (classical) Drinfeld double, which is an even dimensional Lie algebra which admits a Manin decomposition. Manin triples were introduced by , who named them after Yuri Manin. classified the Manin triples where ''g'' is a complex reductive Lie algebra. Manin triples and Lie bialgebras If (''g'', ''p'', ''q'') is a finite-dimensional Manin triple then ''p'' can be made into a Lie bialgebra by letting the cocommutator map ''p'' → ''p'' ⊗ ''p'' be dual to the map ''q'' ⊗ ''q'' → ''q'' (using the fact that the symmetric bilinear form on ''g'' identifies ''q'' with the dual of ''p''). Conversely if ''p'' is a Lie bialgebra then one can con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings ( Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Bilinear Form
In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function B that maps every pair (u,v) of elements of the vector space V to the underlying field such that B(u,v)=B(v,u) for every u and v in V. They are also referred to more briefly as just symmetric forms when "bilinear" is understood. Symmetric bilinear forms on finite-dimensional vector spaces precisely correspond to symmetric matrices given a basis for ''V''. Among bilinear forms, the symmetric ones are important because they are the ones for which the vector space admits a particularly simple kind of basis known as an orthogonal basis (at least when the characteristic of the field is not 2). Given a symmetric bilinear form ''B'', the function is the associated quadratic form on the vector space. Moreover, if the characteristic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yuri Manin
Yuri Ivanovich Manin (russian: Ю́рий Ива́нович Ма́нин; born 16 February 1937) is a Russian mathematician, known for work in algebraic geometry and diophantine geometry, and many expository works ranging from mathematical logic to theoretical physics. Moreover, Manin was one of the first to propose the idea of a quantum computer in 1980 with his book ''Computable and Uncomputable''. Life and career Manin gained a doctorate in 1960 at the Steklov Mathematics Institute as a student of Igor Shafarevich. He is now a Professor at the Max-Planck-Institut für Mathematik in Bonn, and a professor emeritus at Northwestern University. Manin's early work included papers on the arithmetic and formal groups of abelian varieties, the Mordell conjecture in the function field case, and algebraic differential equations. The Gauss–Manin connection is a basic ingredient of the study of cohomology in families of algebraic varieties. He wrote a book on cubic surfaces an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reductive Lie Algebra
In mathematics, a Lie algebra is reductive if its adjoint representation is completely reducible, whence the name. More concretely, a Lie algebra is reductive if it is a direct sum of a semisimple Lie algebra and an abelian Lie algebra: \mathfrak = \mathfrak \oplus \mathfrak; there are alternative characterizations, given below. Examples The most basic example is the Lie algebra \mathfrak_n of n \times n matrices with the commutator as Lie bracket, or more abstractly as the endomorphism algebra of an ''n''-dimensional vector space, \mathfrak(V). This is the Lie algebra of the general linear group GL(''n''), and is reductive as it decomposes as \mathfrak_n = \mathfrak_n \oplus \mathfrak, corresponding to traceless matrices and scalar matrices. Any semisimple Lie algebra or abelian Lie algebra is ''a fortiori'' reductive. Over the real numbers, compact Lie algebras are reductive. Definitions A Lie algebra \mathfrak over a field of characteristic 0 is called reductive if a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Bialgebra
In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it is a set with a Lie algebra and a Lie coalgebra structure which are compatible. It is a bialgebra where the multiplication is skew-symmetric and satisfies a dual Jacobi identity, so that the dual vector space is a Lie algebra, whereas the comultiplication is a 1-cocycle, so that the multiplication and comultiplication are compatible. The cocycle condition implies that, in practice, one studies only classes of bialgebras that are cohomologous to a Lie bialgebra on a coboundary. They are also called Poisson-Hopf algebras, and are the Lie algebra of a Poisson–Lie group. Lie bialgebras occur naturally in the study of the Yang–Baxter equations. Definition A vector space \mathfrak is a Lie bialgebra if it is a Lie algebra, and there is the structure of Lie algebra also on the dual vector space \mathfrak^* which is compatible. More precisely the Lie algebra structure on \mathfrak is given by a Lie bra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cocommutator Map
In mathematics a Lie coalgebra is the dual structure to a Lie algebra. In finite dimensions, these are dual objects: the dual vector space to a Lie algebra naturally has the structure of a Lie coalgebra, and conversely. Definition Let ''E'' be a vector space over a field ''k'' equipped with a linear mapping d\colon E \to E \wedge E from ''E'' to the exterior product of ''E'' with itself. It is possible to extend ''d'' uniquely to a graded derivation (this means that, for any ''a'', ''b'' ∈ ''E'' which are homogeneous elements, d(a \wedge b) = (da)\wedge b + (-1)^ a \wedge(db)) of degree 1 on the exterior algebra of ''E'': :d\colon \bigwedge^\bullet E\rightarrow \bigwedge^ E. Then the pair (''E'', ''d'') is said to be a Lie coalgebra if ''d''2 = 0, i.e., if the graded components of the exterior algebra with derivation (\bigwedge^* E, d) form a cochain complex: :E\ \xrightarrow\ E\wedge E\ \xrightarrow\ \bigwedge^3 E\xrightarrow\ \cdots Relation to de Rham complex Just as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Subalgebra
In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra \mathfrak is a maximal solvable subalgebra. The notion is named after Armand Borel. If the Lie algebra \mathfrak is the Lie algebra of a complex Lie group, then a Borel subalgebra is the Lie algebra of a Borel subgroup. Borel subalgebra associated to a flag Let \mathfrak g = \mathfrak(V) be the Lie algebra of the endomorphisms of a finite-dimensional vector space ''V'' over the complex numbers. Then to specify a Borel subalgebra of \mathfrak g amounts to specify a flag of ''V''; given a flag V = V_0 \supset V_1 \supset \cdots \supset V_n = 0, the subspace \mathfrak b = \ is a Borel subalgebra, and conversely, each Borel subalgebra is of that form by Lie's theorem. Hence, the Borel subalgebras are classified by the flag variety of ''V''. Borel subalgebra relative to a base of a root system Let \mathfrak g be a complex semisimple Lie algebra, \mathfrak h a Cartan subalgebra and ''R'' th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier. ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH RWTH Aachen University (), also known as North Rhine-Westphalia Technical University of Aachen, Rhine-Westphalia Technical University of Aachen, Technical University of Aachen, University of Aachen, or ''Rheinisch-Westfälische Technische Hoch ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]