In mathematics, specifically in
representation theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
, a Borel subalgebra of a
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
is a maximal
solvable subalgebra. The notion is named after
Armand Borel
Armand Borel (21 May 1923 – 11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in alg ...
.
If the Lie algebra
is the Lie algebra of a
complex Lie group
In geometry, a complex Lie group is a Lie group over the complex numbers; i.e., it is a complex-analytic manifold that is also a group in such a way G \times G \to G, (x, y) \mapsto x y^ is holomorphic. Basic examples are \operatorname_n(\math ...
, then a Borel subalgebra is the Lie algebra of a
Borel subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgr ...
.
Borel subalgebra associated to a flag
Let
be the Lie algebra of the endomorphisms of a finite-dimensional vector space ''V'' over the complex numbers. Then to specify a Borel subalgebra of
amounts to specify a
flag
A flag is a piece of textile, fabric (most often rectangular) with distinctive colours and design. It is used as a symbol, a signalling device, or for decoration. The term ''flag'' is also used to refer to the graphic design employed, and fla ...
of ''V''; given a flag
, the subspace
is a Borel subalgebra, and conversely, each Borel subalgebra is of that form by
Lie's theorem In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if \pi: \mathfrak \to \mathfrak(V) is a finite-dimensional representation of a solvable Lie algebra, then ...
. Hence, the Borel subalgebras are classified by the
flag variety of ''V''.
Borel subalgebra relative to a base of a root system
Let
be a complex
semisimple Lie algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of Simple Lie algebra, simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals ...
,
a
Cartan subalgebra
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra \mathfrak of a Lie algebra \mathfrak that is self-normalising (if ,Y\in \mathfrak for all X \in \mathfrak, then Y \in \mathfrak). They were introduced by ...
and ''R'' the
root system
In mathematics, a root system is a configuration of vector space, vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and ...
associated to them. Choosing a base of ''R'' gives the notion of positive roots. Then
has the decomposition
where
. Then
is the Borel subalgebra relative to the above setup. (It is solvable since the derived algebra