Lepton Number
In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number is an additive quantum number, so its sum is preserved in interactions (as opposed to multiplicative quantum numbers such as parity, where the product is preserved instead). The lepton number L is defined by L = n_\ell - n_, where * n_\ell \quad is the number of leptons and * n_ \quad is the number of antileptons. Lepton number was introduced in 1953 to explain the absence of reactions such as : in the Cowan–Reines neutrino experiment, which instead observed : . This process, inverse beta decay, conserves lepton number, as the incoming antineutrino has lepton number −1, while the outgoing positron (antielectron) also has lepton number −1. Lepton flavor conservation In addition to lepton number, lepton fa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three Generation (particle physics), generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of Up quark, up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quark, Quarks cannot exist on their own but form hadrons. Hadrons that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron Antineutrino
The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name ''electron neutrino''. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment). Proposal In the early 1900s, theories predicted that the electrons resulting from beta decay should have been emitted at a specific energy. However, in 1914, James Chadwick showed that electrons were instead emitted in a continuous spectrum. : → + : The early understanding of beta decay In 1930, Wolfgang Pauli theorized that an undetected particle was carrying away the observed difference between the energy, momentum, and angular momentum of the initial and final particles.Niels Bohr was notably opposed to this interpretation of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Beta Decay
In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons. The literature distinguishes between two types of double beta decay: ''ordinary'' double beta decay and ''neutrinoless'' double beta decay. In ordinary double beta decay, which has been observed in several isotopes, two electrons and two electron antineutrinos are emitted from the decaying nucleus. In neutrinoless double beta decay, a hypothesized process that has never been observed, only electrons would be emitted. History The idea of double beta decay was first proposed by Maria Goeppert Mayer in 1935. In 1937, Ettore Majorana demonstrated that all results of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Majorana Fermions
In particle physics a Majorana fermion (, uploaded 19 April 2013, retrieved 5 October 2014; and also based on the pronunciation of physicist's name.) or Majorana particle is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to Dirac fermion, which describes fermions that are not their own antiparticles. With the exception of neutrinos, all of the Standard Model elementary fermions are known to behave as Dirac fermions at low energy (lower than the electroweak symmetry breaking temperature), and none are Majorana fermions. The nature of neutrinos is not settled – they may be either Dirac or Majorana fermions. In condensed matter physics, quasiparticle excitations can appear like bound Majorana states. However, instead of a single fundamental particle, they are the collective movement of several individual particles (themselves composite) which are governed by non-Abelian statistics. Theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grand Unified Theory
A Grand Unified Theory (GUT) is any Mathematical model, model in particle physics that merges the electromagnetism, electromagnetic, weak interaction, weak, and strong interaction, strong fundamental interaction, forces (the three gauge theory, gauge interactions of the Standard Model) into a single force at high energy, energies. Although this Unification (physics), unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the Chronology of the universe#Very early universe, very early universe in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy, the electromagnetic interaction and weak interaction unify into a single combined electroweak interaction. GUT models predict that at even grand unification energy, higher energy, the strong and electroweak interaction ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
B − L
In particle physics, ''B'' − ''L'' (pronounced "bee minus ell") is a quantum number which is the difference between the baryon number () and the lepton number () of a quantum system. Details This quantum number is the charge of a global/ gauge U(1) symmetry in some Grand Unified Theory models, called . Unlike baryon number alone or lepton number alone, this hypothetical symmetry would not be broken by chiral anomalies or gravitational anomalies, as long as this symmetry is global, which is why this symmetry is often invoked. If exists as a symmetry, then for the seesaw mechanism to work has to be spontaneously broken to give the neutrinos a nonzero mass. The anomalies that would break baryon number conservation and lepton number conservation individually cancel in such a way that is always conserved. One hypothetical example is proton decay where a proton () would decay into a pion () and positron (). The weak hypercharge is related to via X + 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chiral Anomaly
In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is analogous to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation"). It is possible that other imbalances have been caused by breaking of a ''chiral law'' of this kind. Many physicists suspect that the fact that the observable universe contains more matter than antimatter is caused by a chiral anomaly. Research into chiral symmetry breaking laws is a major endeavor in particle physics research at this time. Informal introduction The chiral anomaly originally referred to the anomalous decay rate of the neutral pion, as computed in the current algebra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mu2e
Mu2e, or the Muon-to-Electron Conversion Experiment, is a particle physics experiment at Fermilab in the US. The goal of the experiment is to identify physics beyond the Standard Model, namely, the conversion of muons to electrons without the emission of neutrinos, which occurs in a number of theoretical models. Former project co-spokesperson Jim Miller likens this process to neutrino oscillation, but for charged leptons. The rate for this process in the Standard Model of particle physics is unobservably small, so any observation of this process would constitute a major discovery and indicate new physics beyond the standard model. The experiment will be 10,000 times more sensitive than previous muon to electron conversion experiments, and probe effective energy scales up to 10,000 TeV. Timeline Prior work Physicists have been searching for flavor violation since the 1940s. Flavor violation among neutrinos was proven in 1998 at the Super-Kamiokande experiment in Japan. In 198 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetry
Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics. A supersymmetric theory is a theory in which the equations for force and the equations for matter are identical. In theoretical physics, theoretical and mathematical physics, any theory with this property has the ''principle of supersymmetry'' (SUSY). Dozens of supersymmetric theories exist. In theory, supersymmetry is a type of Spacetime symmetries, spacetime symmetry betwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mu To E Gamma
The Mu to E Gamma (MEG) is a particle physics experiment dedicated to measuring the decay of the muon into an electron and a photon, a decay mode which is heavily suppressed in the Standard Model by lepton flavour conservation, but enhanced in supersymmetry and grand unified theories. It is located at the Paul Scherrer Institute and began taking data September 2008. Results In May 2016 the MEG experiment published the world's leading upper limit on the branching ratio of this decay: :\Beta ( \mu^+ \to e^+ \gamma) < 4.2 \times 10^ at 90% confidence level, based on data collected in 2009–2013. This improved the MEG limit from the prior MEGA experiment by a factor of about 28. Apparatus MEG uses a continuous muon beam (3 × 107/s) incident on a plastic target. The decay is reconstructed to look for a back-to-back ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physics Beyond The Standard Model
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, baryon asymmetry, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the Quantum field theory, mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as Gravitational singularity, spacetime singularities like the Big Bang and black hole event horizons. Theories that lie beyond the Standard Model include various extensions of the standard model through supersymmetry, such as the Minimal Supersymmetric Standard Model (MSSM) and Next-to-Minimal Supersymmetric Standard Model (NMSSM), and entirely novel explanations, such as string theory, M ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutrino Oscillation
Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, measured to have a different lepton family number. The probability of measuring a particular Flavour (particle physics), flavor for a neutrino varies between three known states, as it propagates through space. First predicted by Bruno Pontecorvo in 1957, reproduced and translated in reproduced and translated in neutrino oscillation has since been observed by a multitude of experiments in several different contexts. Most notably, the existence of neutrino oscillation resolved the long-standing solar neutrino problem. Neutrino oscillation is of great theoretical physics, theoretical and experimental physics, experimental interest, as the precise properties of the process can shed light on several properties of the neutrino. In particular, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |