HOME
*





B − L
In high-energy physics, ''B'' − ''L'' (pronounced "bee minus ell") is the difference between the baryon number (''B'') and the lepton number (''L''). Details This quantum number is the charge of a global/ gauge U(1) symmetry in some Grand Unified Theory models, called U(1)''B''−''L''. Unlike baryon number alone or lepton number alone, this hypothetical symmetry would not be broken by chiral anomalies or gravitational anomalies, as long as this symmetry is global, which is why this symmetry is often invoked. If ~B - L~ exists as a symmetry, then for the seesaw mechanism to work ~B - L~ has to be spontaneously broken to give the neutrinos a nonzero mass. The anomalies that would break baryon number conservation and lepton number conservation individually cancel in such a way that ~B - L~ is always conserved. One hypothetical example is proton decay where a proton (\,B = 1\,,~ L = 0\,) would decay into a pion (\,B = 0\,,~ L = 0\,) and positron (\,B = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grand Unified Theory
A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into a single electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifyin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High-energy Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proton Decay
In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least years. According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture – forms of radioactive decay which sees a proton become a neutron – are not proton decay, since the proton interacts with other particles within the atom. Some beyond-the-Standard Model ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leptoquark
Leptoquarks (LQs) are hypothetical particles that would interact with quarks and leptons. Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers. Their other quantum numbers, like spin, (fractional) electric charge and weak isospin vary among theories. Leptoquarks are encountered in various extensions of the Standard Model, such as technicolor theories, theories of quark–lepton unification (e.g., Pati–Salam model), or GUTs based on SU(5), SO(10), E6, etc. Leptoquarks are currently searched for in experiments ATLAS and CMS at the Large Hadron Collider in CERN. In March 2021, there were some reports to hint at the possible existence of leptoquarks as an unexpected difference in how bottom quarks decay to create electrons or muons. The measurement has been made at a statistical significance of 3.1 σ, which is well below the 5σ level that is usually considered a discovery. Overview Leptoquarks, if they exist, must be heavier than all the currently known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proton Decay
In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least years. According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture – forms of radioactive decay which sees a proton become a neutron – are not proton decay, since the proton interacts with other particles within the atom. Some beyond-the-Standard Model ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Majoron
In particle physics, majorons (named after Ettore Majorana) are a hypothetical type of Goldstone boson that are conjectured to mediate the neutrino mass violation of lepton number or ''B'' − ''L'' in certain high energy collisions such as :  +  →  +  +  Where two electrons collide to form two W bosons and the majoron J. The U(1)B–L symmetry is assumed to be global so that the majoron is not "eaten up" by the gauge boson and spontaneously broken. Majorons were originally formulated in four dimensions by Y. Chikashige, R. N. Mohapatra and R. D. Peccei to understand neutrino masses by the seesaw mechanism and are being searched for in the neutrino-less double beta decay process. The name majoron was suggested by Graciela Gelmini as a derivative of the last name Majorana with the suffix -on typical of particle names like electron, proton, neutron, etc. There are theoretical extensions of this idea into supersymmetric theories and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Leptogenesis (physics)
__notoc__ In physical cosmology, leptogenesis is the generic term for hypothetical physical processes that produced an asymmetry between leptons and antileptons in the very early universe, resulting in the present-day dominance of leptons over antileptons. In the currently accepted Standard Model, lepton number is nearly conserved at temperatures below the TeV scale, but tunneling processes can change this number; at higher temperature it may change through interactions with sphalerons, particle-like entities.Kuzmin, V. A., Rubakov, V. A., & Shaposhnikov, M. E. (1985). On anomalous electroweak baryon-number non-conservation in the early universe. Physics Letters B, 155(1-2), 36-42. In both cases, the process involved is related to the weak nuclear force, and is an example of chiral anomaly. Such processes could have hypothetically created leptons in the early universe. In these processes baryon number is also non-conserved, and thus baryons should have been created along with l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baryogenesis
In physical cosmology, baryogenesis (also known as baryosynthesis) is the physical process that is hypothesized to have taken place during the Big Bang, early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter (antibaryons) in the observed universe. One of the outstanding problems in modern physics is the predominance of matter over antimatter in the universe. The universe, as a whole, seems to have a nonzero positive baryon number density. Since it is assumed in physical cosmology, cosmology that the particles we see were created using the same physics we measure today, it would normally be expected that the overall baryon number should be zero, as matter and antimatter should have been created in equal amounts. A number of theoretical mechanisms are proposed to account for this discrepancy, namely identifying conditions that favour symmetry breaking and the creation of normal matter (as opposed to antimatter). This imbalance has to be e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


X And Y Bosons
In particle physics, the X and Y bosons (sometimes collectively called "X bosons" ) are hypothetical elementary particles analogous to the W and Z bosons, but corresponding to a unified force predicted by the Georgi–Glashow model, a grand unified theory (GUT). Since the X and Y boson mediate the grand unified force, they would have unusual high mass, which requires more energy to create than the reach of any current particle collider experiment. Significantly, the X and Y bosons couple quarks (constituents of protons and others) to leptons (such as positrons), allowing violation of the conservation of baryon number thus permitting proton decay. However, the Hyper-Kamiokande has put a lower bound on the proton's half-life as around 1034 years. Since some grand unified theories such as the Georgi–Glashow model predict a half-life ''less'' than this, then the existence of X and Y bosons, as formulated by this particular model, remain hypothetical. Details An X&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


X (charge)
In particle physics, the X charge (or simply ''X'') is a conserved quantum number associated with the SO(10) grand unification theory. It is thought to be conserved in strong, weak, electromagnetic, gravitational, and Higgs interactions. Because the X charge is related to the weak hypercharge, it varies depending on the helicity of a particle. For example, a left-handed quark has an X charge of +1, whereas a right-handed quark can have either an X charge of −1 (for up, charm and top quarks), or −3 (for down, strange and bottom quarks). is related to the difference between the baryon number and the lepton number (that is − ), and the weak hypercharge W via the relation: :X = 5(B - L) - 2\,Y_\text \,. X charge in proton decay Proton decay is a hypothetical form of radioactive decay, predicted by many grand unification theories. During proton decay, the common baryonic proton decays into lighter subatomic particles. Howeve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weak Hypercharge
In the Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted Y_\mathsf and corresponds to the gauge symmetry U(1). It is conserved (only terms that are overall weak-hypercharge neutral are allowed in the Lagrangian). However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak hypercharge (and weak isospin ). Only a specific combination of them, ~Q = T_3 + \tfrac\, Y_\mathsf (electric charge), is conserved. Mathematically, weak hypercharge appears similar to the Gell-Mann–Nishijima formula for the hypercharge of strong interactions (which is not conserved in weak interactions and is zero for leptons). In the electroweak theory SU(2) transformations commute with U(1) transformations by defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positron
The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides with an electron, annihilation occurs. If this collision occurs at low energies, it results in the production of two or more photons. Positrons can be created by positron emission radioactive decay (through weak interactions), or by pair production from a sufficiently energetic photon which is interacting with an atom in a material. History Theory In 1928, Paul Dirac published a paper proposing that electrons can have both a positive and negative charge. This paper introduced the Dirac equation, a unification of quantum mechanics, special relativity, and the then-new concept of electron spin to explain the Zeeman effect. The paper did not explicitly predict a new particle but did allow for electrons having either positive or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]