Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct ph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ω-logic
In set theory, Ω-logic is an infinitary logic and deductive system proposed by as part of an attempt to generalize the theory of determinacy of pointclasses to cover the structure H_. Just as the axiom of projective determinacy yields a canonical theory of H_, he sought to find axioms that would give a canonical theory for the larger structure. The theory he developed involves a controversial argument that the continuum hypothesis is false. Analysis Woodin's Ω-conjecture asserts that if there is a proper class of Woodin cardinals (for technical reasons, most results in the theory are most easily stated under this assumption), then Ω-logic satisfies an analogue of the completeness theorem. From this conjecture, it can be shown that, if there is any single axiom which is comprehensive over H_ (in Ω-logic), it must imply that the continuum is not \aleph_1. Woodin also isolated a specific axiom, a variation of Martin's maximum, which states that any Ω-consistent \Pi_2 (over H_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Martin's Axiom
In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, 𝔠, behave roughly like ℵ0. The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments. Statement For a cardinal number ''κ'', define the following statement: ;MA(''κ''): For any partial order ''P'' satisfying the countable chain condition (hereafter ccc) and any set ''D'' = ''i''∈''I'' of dense subsets of ''P'' such that '', D, '' ≤ ''κ'', there is a filter ''F'' on ''P'' such that ''F'' ∩ ''D''''i'' is non- empty for every ''D''''i'' ∈ ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cabal (set Theory)
The Cabal was, or perhaps is, a set of set theorists in Southern California, particularly at UCLA and Caltech, but also at UC Irvine. Organization and procedures range from informal to nonexistent, so it is difficult to say whether it still exists or exactly who has been a member, but it has included such notable figures as Donald A. Martin, Yiannis N. Moschovakis, John R. Steel, and Alexander S. Kechris. Others who have published in the proceedings of the Cabal seminar include Robert M. Solovay, W. Hugh Woodin, Matthew Foreman, and Steve Jackson. The work of the group is characterized by free use of large cardinal In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least ... axioms, and research into the descriptive set theoretic behavior of sets of reals if such assumptions hold. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gödel's Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchy L_\alpha. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What ''L'' is L can be thought of as being built in "stages" res ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure (mathematics), measure on a cardinal ''κ'', or more generally on any set. For a cardinal ''κ'', it can be described as a subdivision of all of its subsets into large and small sets such that ''κ'' itself is large, ∅ and all singleton (mathematics), singletons (with ''α'' ∈ ''κ'') are small, set complement, complements of small sets are large and vice versa. The intersection of fewer than ''κ'' large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanisław Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number ''κ'' such that there exists a ''κ''-additive, non-trivial, 0-1-valued measure (mathematics), measure ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universe (mathematics)
In mathematics, and particularly in set theory, category theory, type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation. In set theory, universes are often class (set theory), classes that contain (as element (set theory), elements) all sets for which one hopes to Mathematical proof, prove a particular theorem. These classes can serve as Inner model, inner models for various axiomatic systems such as Zermelo–Fraenkel set theory, ZFC or Morse–Kelley set theory. Universes are of critical importance to formalizing concepts in category theory inside set-theoretical foundations. For instance, the List of mathematical jargon#canonical, canonical motivating example of a category is Category of sets, Set, the category of all sets, which cannot be formalized in a set theory without some notion of a universe. In type theory, a universe is a type whose elements are types. In a specific cont ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inaccessible Cardinal
In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since about 1950, "inaccessible cardinal" has typically meant "strongly inaccessible cardinal" whereas before it has meant "weakly inaccessible cardinal". Weakly inaccessible cardinals were introduced by . Strongly inaccessible cardinals were introduced by and ; in the latter they were referred to along with \aleph_0 as ''Grenzzahlen'' ( English "limit numbers"). Every strongly inaccessible cardinal is a weakly inaccessible cardinal. The generalized continuum hypothesis implies that all weakly inaccessible cardinals are strongly inaccessible as well. The two notions of an inaccessible cardinal \kappa describe a cardinality \kappa which can not be obtained as the cardinality of a result of typical set-theoretic operations involving only sets of c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset of a set with the cardinality is a function from to the two-element set , denoted as , a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transfinite Induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then is also true. Then transfinite induction tells us that is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that is true. * Successor case: Prove that for any successor ordinal , follows from (and, if necessary, for all ). * Limit case: Prove that for any [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |