Gödel Operation
In mathematical set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ..., a set of Gödel operations is a finite collection of operations on sets that can be used to construct the constructible sets from ordinals. introduced the original set of 8 Gödel operations 𝔉1,...,𝔉8 under the name fundamental operations. Other authors sometimes use a slightly different set of about 8 to 10 operations, usually denoted ''G''1, ''G''2,... Definition used the following eight operations as a set of Gödel operations (which he called fundamental operations): #\mathfrak_1(X,Y) = \ #\mathfrak_2(X,Y) = E\cdot X = \ #\mathfrak_3(X,Y) = X-Y #\mathfrak_4(X,Y) = X\upharpoonright Y= X\cdot (V\times Y) = \ #\mathfrak_5(X,Y) = X\cdot \mathfrak(Y) = \ #\mathfrak_6(X,Y) = X\cdot Y^= \ #\mathfr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by L, is a particular Class (set theory), class of Set (mathematics), sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchy L_\alpha. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the Continuum hypothesis#The generalized continuum hypothesis, generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Restriction (mathematics)
In mathematics, the restriction of a function f is a new function, denoted f\vert_A or f , obtained by choosing a smaller domain A for the original function f. The function f is then said to extend f\vert_A. Formal definition Let f : E \to F be a function from a set E to a set F. If a set A is a subset of E, then the restriction of f to A is the function _A : A \to F given by _A(x) = f(x) for x \in A. Informally, the restriction of f to A is the same function as f, but is only defined on A. If the function f is thought of as a relation (x,f(x)) on the Cartesian product E \times F, then the restriction of f to A can be represented by its graph, :G(_A) = \ = G(f)\cap (A\times F), where the pairs (x,f(x)) represent ordered pairs in the graph G. Extensions A function F is said to be an ' of another function f if whenever x is in the domain of f then x is also in the domain of F and f(x) = F(x). That is, if \operatorname f \subseteq \operatorname F and F\big\vert_ = f. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jensen Hierarchy
In set theory, a mathematical discipline, the Jensen hierarchy or J-hierarchy is a modification of Gödel's constructible hierarchy, L, that circumvents certain technical difficulties that exist in the constructible hierarchy. The J-Hierarchy figures prominently in fine structure theory, a field pioneered by Ronald Jensen, for whom the Jensen hierarchy is named. Rudimentary functions describe a method for iterating through the Jensen hierarchy. Definition As in the definition of ''L'', let Def(''X'') be the collection of sets definable with parameters over ''X'': : \textrm(X) := \ The constructible hierarchy, L is defined by transfinite recursion. In particular, at successor ordinals, L_ = \textrm(L_\alpha). The difficulty with this construction is that each of the levels is not closed under the formation of unordered pairs; for a given x, y \in L_ \setminus L_\alpha, the set \ will not be an element of L_, since it is not a subset of L_\alpha. However, L_\alpha does ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Urelements
In set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ''ur-'', 'primordial') is an object that is not a set (has no elements), but that may be an element of a set. It is also referred to as an atom or individual. Ur-elements are also not identical with the empty set. Theory There are several different but essentially equivalent ways to treat urelements in a first-order theory. One way is to work in a first-order theory with two sorts, sets and urelements, with ''a'' ∈ ''b'' only defined when ''b'' is a set. In this case, if ''U'' is an urelement, it makes no sense to say X \in U, although U \in X is perfectly legitimate. Another way is to work in a one-sorted theory with a unary relation used to distinguish sets and urelements. As non-empty sets contain members while urelements do not, the unary relation is only needed to distinguish the empty set from urelements. Note that in this case, the axiom of extensionality must be formulated t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |