Bigoni–Piccolroaz Yield Criterion
   HOME



picture info

Bigoni–Piccolroaz Yield Criterion
The Bigoni–Piccolroaz yield criterion is a Yield (engineering), yielding model, based on a phenomenological approach, capable of describing the mechanical behavior of a broad class of pressure-sensitive granular materials such as soil, concrete, porous metals and ceramics. General concepts The idea behind the Bigoni-Piccolroaz criterion is that of deriving a function capable of transitioning between the yield surfaces typical of different classes of materials only by changing the function parameters. The reason for this kind of implementation lies in the fact that the materials towards which the model is targeted undergo consistent changes during manufacturing and working conditions. The typical example is that of the hardening of a power specimen by Compaction of ceramic powders, compaction and sintering during which the material changes from granular to dense. The Bigoni-Piccolroaz yielding criterion can be represented in the stress space, Haigh–Westergaard stress space a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Yield (engineering)
In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation. The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. For most metals, such as aluminium and cold-worked steel, there is a gradual onset of non-linear behavior, and no precise yield point. In such a case, the offset yield p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Mises Yield Criterion
In continuum mechanics, the maximum distortion energy criterion (also von Mises yield criterion) states that yielding of a ductile material begins when the second invariant of deviatoric stress J_2 reaches a critical value. It is a part of plasticity theory that mostly applies to ductile materials, such as some metals. Prior to yield, material response can be assumed to be of a linear elastic, nonlinear elastic, or viscoelastic In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both Viscosity, viscous and Elasticity (physics), elastic characteristics when undergoing deformation (engineering), deformation. Viscous mate ... behavior. In materials science and engineering, the von Mises yield criterion is also formulated in terms of the von Mises stress or equivalent tensile stress, \sigma_\text. This is a scalar value of stress that can be computed from the Cauchy stress tensor. In this case, a material is said to start y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ceramic Materials
A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick. The earliest ceramics made by humans were fired clay bricks used for building house walls and other structures. Other pottery objects such as pots, vessels, vases and figurines were made from clay, either by itself or mixed with other materials like silica, hardened by sintering in fire. Later, ceramics were glazed and fired to create smooth, colored surfaces, decreasing porosity through the use of glassy, amorphous ceramic coatings on top of the crystalline ceramic substrates. Ceramics now include domestic, industrial, and building products, as well as a wide range of materials developed for use in advanced ceramic engineering, such as semiconductors. The word ''ceramic'' comes from the Ancient Greek word (), meaning "of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structural Analysis
Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on physical structures and their components. In contrast to theory of elasticity, the models used in structural analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, velocity, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often precluding physical tests. Structural analysis is thus a key part of the engineering design of structures.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yield Criteria
Yield may refer to: Measures of output/function Computer science * Yield (multithreading) is an action that occurs in a computer program during multithreading * See generator (computer programming) Physics/chemistry * Yield (chemistry), the amount of product obtained in a chemical reaction ** The arrow symbol in a chemical equation * Yield (engineering), yield strength of a material as defined in engineering and material science * Fission product yield * Nuclear weapon yield Earth science * Crop yield, measurement of the amount of a crop harvested, or animal products such as wool, meat or milk produced, per unit area of land ** Yield (wine), the amount of grapes or wine that is produced per unit surface of vineyard * Ecological yield, the harvestable population growth of an ecosystem, most commonly measured in forestry and fishery * Specific yield, a measure of aquifer capacity * Yield (hydrology), the volume of water escaping from a spring Production/manufacturing * Yield (ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Materials Science
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials science stem from the Age of Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools for its study. Materials scientists emphasize understanding how the history of a material (''processing'') influences its struc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Material Failure Theory
Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure ( yield). Depending on the conditions (such as temperature, state of stress, loading rate) most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile. In mathematical terms, failure theory is expressed in the form of various failure criteria which are valid for specific materials. Failure criteria are functions in stress or strain space which separate "failed" states from "unfailed" states. A precise physical definition of a "failed" state is not easily quantified and several working definitions are in use in the engineering community. Quite often, phenomenological failure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasticity (physics)
In physics and materials science, plasticity (also known as plastic deformation) is the ability of a solid material to undergo permanent Deformation (engineering), deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from Elasticity (physics), elastic behavior to plastic behavior is known as Yield (engineering), yielding. Plastic deformation is observed in most materials, particularly metals, soils, Rock (geology), rocks, concrete, and foams. However, the physical mechanisms that cause plastic deformation can vary widely. At a crystalline scale, plasticity in metals is usually a consequence of dislocations. Such defects are relatively rare in most crystalline materials, but are numerous in some and part of their crystal structure; in such cases, plastic crystallinity can resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yield Surface
A yield surface is a five-dimensional surface in the six-dimensional space of Stress (mechanics), stresses. The yield surface is usually convex polytope, convex and the state of stress of ''inside'' the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its Yield (engineering), yield point and the material is said to have become Plasticity (physics), plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in plasticity (physics), rate-independent plasticity, though not in some models of viscoplasticity.Simo, J. C. and Hughes, T,. J. R., (1998), Computational Inelasticity, Springer. The yield surface is usually expressed in terms of (and visualized in) a three-dimensional Stress (physics)#Principal stresses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mohr–Coulomb Theory
Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength. In geotechnical engineering it is used to define shear strength of soils and rocks at different effective stresses. In structural engineering it is used to determine failure load as well as the angle of fracture of a displacement fracture in concrete and similar materials. Coulomb's friction hypothesis is used to determine the combination of shear and normal stress that will cause a fracture of the material. Mohr's circle is used to determine which principal stresses will produce this combination of shear and normal stress, and the angle of the plane in which this will ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tresca
Tresca may refer to: * Carlo Tresca (1879–1943), Italian-born American anarchist * Henri Tresca Henri Édouard Tresca (12 October 1814 – 21 June 1885) was a French mechanical engineer, and a professor at the Conservatoire National des Arts et Métiers in Paris. Work on plasticity He is the father of the field of plasticity, or non-recov ... (1814–1885), French mechanical engineer {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yield Surface
A yield surface is a five-dimensional surface in the six-dimensional space of Stress (mechanics), stresses. The yield surface is usually convex polytope, convex and the state of stress of ''inside'' the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its Yield (engineering), yield point and the material is said to have become Plasticity (physics), plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in plasticity (physics), rate-independent plasticity, though not in some models of viscoplasticity.Simo, J. C. and Hughes, T,. J. R., (1998), Computational Inelasticity, Springer. The yield surface is usually expressed in terms of (and visualized in) a three-dimensional Stress (physics)#Principal stresses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]