Uranium-236
   HOME

TheInfoList



OR:

Uranium-236 (236U) is an isotope of uranium that is neither
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
with
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wi ...
s, nor very good
fertile material Fertile material is a material that, although not itself fissionable by thermal neutrons, can be converted into a fissile material by neutron absorption and subsequent nuclei conversions. Naturally occurring fertile materials Naturally occurring ...
, but is generally considered a nuisance and long-lived radioactive waste. It is found in
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
and in the
reprocessed uranium Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material s ...
made from spent nuclear fuel.


Creation and yield

The fissile isotope
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
fuels most nuclear reactors. When 235U absorbs a
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wi ...
, one of two processes can occur. About 82% of the time, it will fission; about 18% of the time, it will not fission, instead emitting gamma radiation and yielding 236U. Thus, the yield of 236U per 235U+n reaction is about 18%, and the yield of fission products is about 82%. In comparison, the yields of the most abundant individual fission products like
caesium-137 Caesium-137 (), cesium-137 (US), or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nucle ...
,
strontium-90 Strontium-90 () is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. It undergoes β− decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and ...
, and
technetium-99 Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, produci ...
are between 6% and 7%, and the combined yield of medium-lived (10 years and up) and long-lived fission products is about 32%, or a few percent less as some are transmutated by
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
.
Caesium-135 Caesium (55Cs) has 40 known isotopes, making it, along with barium and mercury, one of the elements with the most isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisot ...
is the most notable "absent fission product", as it is found far more in
nuclear fallout Nuclear fallout is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioac ...
than in
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
since its parent nuclide Xenon-135 is the strongest known
neutron poison In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
. The second-most used fissile isotope
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
can also fission or not fission on absorbing a thermal neutron. The product
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
makes up a large proportion of
reactor-grade plutonium Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes der ...
(plutonium recycled from spent fuel that was originally made with enriched natural uranium and then used once in an LWR). 240Pu decays with a half-life of 6561 years into 236U. In a closed
nuclear fuel cycle The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in w ...
, most 240Pu will be fissioned (possibly after more than one neutron capture) before it decays, but 240Pu discarded as
nuclear waste Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, rare-earth mining, and nuclear weapons ...
will decay over thousands of years. As has a shorter half life than the grade of any sample of plutonium mostly composed of those two isotopes will slowly increase while the total amount of plutonium in the sample will slowly decrease over centuries and millennia.
Alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
of will yield uranium-236 while decays to uranium-235. While the largest part of uranium-236 has been produced by neutron capture in nuclear power reactors, it is for the most part stored in nuclear reactors and waste repositories. The most significant contribution to uranium-236 abundance in the environment is the 238U(n,3n)236U reaction by
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s in
thermonuclear weapon A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a low ...
s. The A-bomb testing of the 1940s, 1950s, and 1960s has raised the environmental abundance levels significantly above the expected natural levels.


Destruction and decay

236U, on absorption of a thermal
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
, does not undergo fission, but becomes 237U, which quickly undergoes
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
to 237Np. However, the
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
of 236U is low, and this process does not happen quickly in a thermal reactor. Spent nuclear fuel typically contains about 0.4% 236U. With a much greater cross-section, 237Np may eventually absorb another
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
and become 238Np, which quickly
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
s to plutonium-238 (another non-fissile isotope). 236U and most other
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
are fissionable by
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s in a nuclear bomb or a
fast neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as opposed ...
. A small number of fast reactors have been in research use for decades, but widespread use for power production is still in the future. Uranium-236
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
s with a half-life of 23.420 million years to thorium-232. It is longer-lived than any other artificial
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
or fission products produced in the
nuclear fuel cycle The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in w ...
. ( Plutonium-244, which has a half-life of 80 million years, is not produced in significant quantity by the
nuclear fuel cycle The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in w ...
, and the longer-lived
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
, uranium-238, and thorium-232 occur in nature.)


Difficulty of separation

Unlike
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, minor actinides, fission products, or
activation products Activation products are materials made radioactive by neutron activation. Fission products and actinides produced by neutron absorption of nuclear fuel itself are normally referred to by those specific names, and ''activation product'' reserved fo ...
, chemical processes cannot separate 236U from 238U, 235U, 232U or other uranium isotopes. It is even difficult to remove with
isotopic separation Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" ...
, as low enrichment will concentrate not only the desirable 235U and 233U but the undesirable 236U, 234U and 232U. On the other hand, 236U in the environment cannot separate from 238U and concentrate separately, which limits its radiation hazard in any one place.


Contribution to radioactivity of reprocessed uranium

The half-life of 238U is about 190 times as long as that of 236U; therefore, 236U should have about 190 times as much
specific activity Specific activity is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. Activity is a quantity (for which the SI unit is the becquerel) related to radioactivity, and is defined as the number of radi ...
. That is, in reprocessed uranium with 0.5% 236U, the 236U and 238U will produce about the same level of radioactivity. (235U contributes only a few percent.) The ratio is less than 190 when the decay products of each are included. The decay chain of uranium-238 to
uranium-234 Uranium-234 (234U or U-234) is an isotope of uranium. In natural uranium and in uranium ore, 234U occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% (55 parts per million) of the raw uranium because its half-lif ...
and eventually
lead-206 Lead (82Pb) has four stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the urani ...
involves emission of eight alpha particles in a time (hundreds of thousands of years) short compared to the half-life of 238U, so that a sample of 238U in equilibrium with its decay products (as in natural
uranium ore Uranium ore deposits are economically recoverable concentrations of uranium within the Earth's crust. Uranium is one of the more common elements in the Earth's crust, being 40 times more common than silver and 500 times more common than gold. It ...
) will have eight times the alpha activity of 238U alone. Even purified natural uranium where the post-uranium decay products have been removed will contain an equilibrium quantity of 234U and therefore about twice the alpha activity of pure 238U. Enrichment to increase 235U content will increase 234U to an even greater degree, and roughly half of this 234U will survive in the spent fuel. On the other hand, 236U decays to thorium-232 which has a half-life of 14 billion years, equivalent to a decay rate only 31.4% as great as that of 238U.


Depleted uranium

Depleted uranium used in kinetic energy penetrators, etc. is supposed to be made from
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 ...
tailings that have never been irradiated in a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
, not
reprocessed uranium Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material s ...
. However, there have been claims that some depleted uranium has contained small amounts of 236U.


See also

* Depleted uranium *
Uranium market The uranium market, like all commodity markets, has a history of volatility, moving with the standard forces of supply and demand as well as geopolitical pressures. It has also evolved particularities of its own in response to the unique nature and ...
* Nuclear reprocessing * United States Enrichment Corporation *
Nuclear fuel cycle The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in w ...
*
Nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced ...


References


External links


Uranium , Radiation Protection Program , US EPA

NLM Hazardous Substances Databank - Uranium, Radioactive
{{Isotopes of uranium Actinides Isotopes of uranium Nuclear materials