LWR
   HOME
*



picture info

LWR
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor. There are three varieties of light-water reactors: the pressurized water reactor (PWR), the boiling water reactor (BWR), and (most designs of) the supercritical water reactor (SCWR). History Early concepts and experiments After the discoveries of fission, moderation and of the theoretical possibility of a nuclear chain reaction, early experimental results rapidly showed that natural uranium could only undergo a sustained chain reaction using graphite or heavy water as a moderator. While the world's first reactors ( CP-1, X10 etc.) were successfully reaching criticality, uranium enrichment began to develop f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supercritical Water Reactor
The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure (i.e. greater than 22.1 MPa). The term ''critical'' in this context refers to the critical point of water, and must not be confused with the concept of criticality of the nuclear reactor. The water heated in the reactor core becomes a supercritical fluid above the critical temperature of 374 °C, transitioning from a fluid more resembling liquid water to a fluid more resembling saturated steam (which can be used in a steam turbine), without going through the distinct phase transition of boiling. In contrast, the well-established pressurized water reactors (PWR) have a primary cooling loop of liquid water at a subcritical pressure, transporting heat from the reactor core to a secondary cooling loop, where the steam for driving the turbines is produced in a boiler (called the steam generator). Boiling water reactor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pressurized Heavy-water Reactor
A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water ( deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for pressurized water reactor. While heavy water is very expensive to isolate from ordinary water (often referred to as ''light water'' in contrast to ''heavy water''), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Reactor
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid (water or gas), which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. , the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world. In the early era of nuclear reactors (1940s), a reactor was known as a nuclear pile or atomic pile (so-called because the graphite moderator blocks of the first reactor were placed into a tall pi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boiling Water Reactor
A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR), which is also a type of light water nuclear reactor. The main difference between a BWR and PWR is that in a BWR, the reactor core heats water, which turns to steam and then drives a steam turbine. In a PWR, the reactor core heats water, which does not boil. This hot water then exchanges heat with a lower pressure system, which turns water into steam that drives the turbine. The BWR was developed by the Argonne National Laboratory and General Electric (GE) in the mid-1950s. The main present manufacturer is GE Hitachi Nuclear Energy, which specializes in the design and construction of this type of reactor. Overview A boiling water reactor uses demineralized water as a coolant and neu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uranium Enrichment
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U with 99.2739–99.2752% natural abundance), uranium-235 (235U, 0.7198–0.7202%), and uranium-234 (234U, 0.0050–0.0059%). 235U is the only nuclide existing in nature (in any appreciable amount) that is fissile with thermal neutrons. Enriched uranium is a critical component for both civil nuclear power generation and military nuclear weapons. The International Atomic Energy Agency attempts to monitor and control enriched uranium supplies and processes in its efforts to ensure nuclear power generation safety and curb nuclear weapons proliferation. There are about 2,000 tonnes of highly enriched uranium in the world, produced mostly for nuclear power, nuclear weapons, naval propulsion, and smaller quantities for research reactors. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Idaho National Laboratory
Idaho National Laboratory (INL) is one of the national laboratories of the United States Department of Energy and is managed by the Battelle Energy Alliance. While the laboratory does other research, historically it has been involved with nuclear research. Much of current knowledge about how nuclear reactors behave and misbehave was discovered at what is now Idaho National Laboratory. John Grossenbacher, former INL director, said, "The history of nuclear energy for peaceful application has principally been written in Idaho". Various organizations have built more than 50 reactors at what is commonly called "the Site", including the ones that gave the world its first usable amount of electricity from nuclear power and the power plant for the world's first nuclear submarine. Although many are now decommissioned, these facilities are the largest concentration of reactors in the world. It is on a complex in the high desert of eastern Idaho, between Arco to the west and Idaho Fal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Mass
In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fission cross-section), density, shape, enrichment, purity, temperature, and surroundings. The concept is important in nuclear weapon design. Explanation of criticality When a nuclear chain reaction in a mass of fissile material is self-sustaining, the mass is said to be in a ''critical'' state in which there is no increase or decrease in power, temperature, or neutron population. A numerical measure of a critical mass is dependent on the effective neutron multiplication factor , the average number of neutrons released per fission event that go on to cause another fission event rather than being absorbed or leaving the material. When ''k'' = 1, the mass is critical, and the chain reaction is self-sustaining. A ''subcritical'' mass is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Mass
In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties (specifically, its nuclear fission cross-section), density, shape, enrichment, purity, temperature, and surroundings. The concept is important in nuclear weapon design. Explanation of criticality When a nuclear chain reaction in a mass of fissile material is self-sustaining, the mass is said to be in a ''critical'' state in which there is no increase or decrease in power, temperature, or neutron population. A numerical measure of a critical mass is dependent on the effective neutron multiplication factor , the average number of neutrons released per fission event that go on to cause another fission event rather than being absorbed or leaving the material. When ''k'' = 1, the mass is critical, and the chain reaction is self-sustaining. A ''subcritical'' mass is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aqueous Homogeneous Reactor
Aqueous homogeneous reactors (AHR) are a type of nuclear reactor in which soluble nuclear salts (usually uranium sulfate or uranium nitrate) are dissolved in water. The fuel is mixed with the coolant and the moderator, thus the name "homogeneous" ("of the same physical state"). The water can be either heavy water or ordinary (light) water, both of which need to be very pure. Their self-controlling features and ability to handle very large increases in reactivity make them unique among reactors, and possibly safest. At Santa Susana, California, Atomics International performed a series of tests titled The Kinetic Energy Experiments. In the late 1940s, control rods were loaded on springs and then flung out of the reactor in milliseconds. Reactor power shot up from ~100 watts to over ~1,000,000 watts with no problems observed. Aqueous homogeneous reactors were sometimes called "water boilers" (not to be confused with boiling water reactors), as the water inside appears to boil, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

World War II
World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing military alliances: the Allies and the Axis powers. World War II was a total war that directly involved more than 100 million personnel from more than 30 countries. The major participants in the war threw their entire economic, industrial, and scientific capabilities behind the war effort, blurring the distinction between civilian and military resources. Aircraft played a major role in the conflict, enabling the strategic bombing of population centres and deploying the only two nuclear weapons ever used in war. World War II was by far the deadliest conflict in human history; it resulted in 70 to 85 million fatalities, mostly among civilians. Tens of millions died due to genocides (including the Holocaust), starvation, ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alvin M
Alvin may refer to: Places Canada *Alvin, British Columbia United States *Alvin, Colorado *Alvin, Georgia * Alvin, Illinois * Alvin, Michigan *Alvin, Texas *Alvin, Wisconsin, a town *Alvin (community), Wisconsin, an unincorporated community Other uses * Alvin (given name) * Alvin (crater), a crater on Mars * Alvin (digital cultural heritage platform), a Swedish platform for digitised cultural heritage * Alvin (horse), a Canadian Standardbred racehorse * 13677 Alvin, an asteroid * DSV ''Alvin'', a deep-submergence vehicle * Alvin, a fictional planet on ''ALF'' (TV series) * Alvin Seville, of the fictional animated characters Alvin and the Chipmunks * "Alvin", by James from the album ''Girl at the End of the World'' * Tropical Storm Alvin See also * Alvin Community College * Alvin High School Alvin High School is a public high school located in the city of Alvin, Texas, United States and classified as a 6A school by the University Interscholastic League (UIL). It is a part o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]