Thermal stress
   HOME

TheInfoList



OR:

In mechanics and thermodynamics, thermal stress is mechanical
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
created by any change in
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
of a material. These stresses can lead to
fracturing Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displa ...
or
plastic deformation In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
depending on the other variables of heating, which include material types and constraints. Temperature gradients, thermal expansion or contraction and
thermal shock Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different pa ...
s are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur. Thermal shock can result from a rapid change in temperature, resulting in cracking or shattering.


Temperature gradients

When a material is rapidly heated or cooled, the surface and internal temperature will have a difference in temperature. Quick heating or cooling causes thermal expansion or contraction respectively, this localized movement of material causes thermal stresses. Imagine heating a cylinder, first the surface rises in temperature and the center remains the same initial temperature. After some time the center of the cylinder will reach the same temperature as the surface. During the heat up the surface is relatively hotter and will expand more than the center. An example of this is dental fillings can cause thermal stress in a person's mouth. Sometimes dentists use dental fillings with different thermal expansion coefficients than tooth enamel, the fillings will expand faster than the enamel and cause pain in a person's mouth.


Thermal expansion and contraction

Material will expand or contract depending on the material's thermal expansion coefficient. As long as the material is free to move, the material can expand or contract freely without generating stresses. Once this material is attached to a rigid body at multiple locations, thermal stresses can be created in the geometrically constrained region. This stress is calculated by multiplying the change in temperature, material's thermal expansion coefficient and material's
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied le ...
(see formula below). E is
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied le ...
, \alpha is thermal expansion coefficient, T_0 is initial temperature and T_f is the final temperature. ::\sigma = E \alpha \left(T_f - T_0 \right) = E \alpha \Delta When T_f is greater than T_0, the constraints exert a compressive force on the material. The opposite happens while cooling; when T_f is less than T_0, the stress will be tensile. A welding example involves heating and cooling of metal which is a combination of thermal expansion, contraction, and temperature gradients. After a full cycle of heating and cooling, the metal is left with
residual stress In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening i ...
around the weld.


Thermal shock Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different pa ...

This is a combination of a large temperature gradient due to low thermal conductivity, in addition to rapid change in temperature on brittle materials. The change in temperature causes stresses on the surface that are in tension, which encourages crack formation and propagation. Ceramics materials are usually susceptible to thermal shock. An example is when glass is heated up to a high temperature and then quickly quenched in cold water. As the temperature of the glass falls rapidly, stresses are induced and causes fractures in the body of the glass which can be seen as cracks or even shattering in some cases.


References

{{Reflist Solid mechanics