Terminator (genetics)
   HOME

TheInfoList



OR:

In
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
, a transcription terminator is a section of
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
sequence that marks the end of a
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
or
operon In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splic ...
in genomic DNA during
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
. This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex. These processes include the direct interaction of the mRNA secondary structure with the complex and/or the indirect activities of recruited
termination factor In molecular biology, a termination factor is a protein that mediates the termination of RNA transcription by recognizing a transcription terminator and causing the release of the newly made mRNA. This is part of the process that regulates the tra ...
s. Release of the transcriptional complex frees
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
and related transcriptional machinery to begin transcription of new mRNAs.


In prokaryotes

Two classes of transcription terminators, Rho-dependent and Rho-independent, have been identified throughout
prokaryotic A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
genomes. These widely distributed sequences are responsible for triggering the end of transcription upon normal completion of gene or
operon In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splic ...
transcription, mediating early termination of transcripts as a means of regulation such as that observed in
transcriptional attenuation In genetics, attenuation is a regulatory mechanism for some bacterial operons that results in premature termination of transcription. The canonical example of attenuation used in many introductory genetics textbooks, is ribosome-mediated attenuat ...
, and to ensure the termination of runaway transcriptional complexes that manage to escape earlier terminators by chance, which prevents unnecessary energy expenditure for the cell.


Rho-dependent terminators

Rho-dependent transcription terminators require a large protein called a
Rho factor A ρ factor (Rho factor) is a bacterial protein involved in the termination of transcription. * Rho factor binds to the transcription terminator pause site, an exposed region of single stranded RNA (a stretch of 72 nucleotides) after the open re ...
which exhibits RNA
helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separatin ...
activity to disrupt the mRNA-DNA-RNA polymerase transcriptional complex. Rho-dependent terminators are found in
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
and
phages A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacterio ...
. The Rho-dependent terminator occurs downstream of translational
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in mess ...
s and consists of an unstructured, cytosine-rich sequence on the mRNA known as a Rho utilization site (''rut'') for which a consensus sequence has not been identified, and a downstream transcription stop point (''tsp''). The ''rut'' serves as a mRNA loading site and as an activator for Rho; activation enables Rho to efficiently hydrolyze ATP and translocate down the mRNA while it maintains contact with the rut site. Rho is able to catch up with the RNA polymerase because it is being stalled at the downstream ''tsp'' sites. Multiple different sequences can function as a tsp site. Contact between Rho and the RNA polymerase complex stimulates dissociation of the transcriptional complex through a mechanism involving allosteric effects of Rho on RNA polymerase.


Rho-independent terminators

Intrinsic transcription terminators or Rho-independent terminators require the formation of a self-annealing
hairpin A hairpin or hair pin is a long device used to hold a person's hair in place. It may be used simply to secure long hair out of the way for convenience or as part of an elaborate hairstyle or coiffure. The earliest evidence for dressing the hai ...
structure on the elongating transcript, which results in the disruption of the mRNA-DNA-RNA polymerase ternary complex. The terminator sequence in DNA contains a 20 basepair GC-rich region of
dyad symmetry In genetics, dyad symmetry refers to two areas of a DNA strand whose base pair sequences are inverted repeats of each other. They are often described as palindromes. For example, the following shows dyad symmetry between sequences GAATAC and GTATT ...
followed by a short poly-A tract or "A stretch" which is transcribed to form the terminating hairpin and a 7–9 nucleotide "U tract" respectively. The mechanism of termination is hypothesized to occur through a combination of direct promotion of dissociation through allosteric effects of hairpin binding interactions with the RNA polymerase and "competitive kinetics". The hairpin formation causes RNA polymerase stalling and destabilization, leading to a greater likelihood that dissociation of the complex will occur at that location due to increased time spent paused at that site and reduced stability of the complex. Additionally, the elongation protein factor NusA interacts with the RNA polymerase and the hairpin structure to stimulate transcriptional termination.


In eukaryotes

In
eukaryotic Eukaryotes () are organisms whose Cell (biology), cells have a cell nucleus, nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the ...
transcription of mRNAs, terminator signals are recognized by protein factors that are associated with the
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryo ...
and which trigger the termination process. Once the poly-A signals are transcribed into the mRNA, the proteins cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) transfer from the carboxyl terminal domain of RNA polymerase II to the poly-A signal. These two factors then recruit other proteins to the site to cleave the transcript, freeing the mRNA from the transcription complex, and add a string of about 200 A-repeats to the 3' end of the mRNA in a process known as polyadenylation. During these processing steps, the RNA polymerase continues to transcribe for several hundred to a few thousand bases and eventually dissociates from the DNA and downstream transcript through an unclear mechanism; there are two basic models for this event known as the torpedo and allosteric models.


Torpedo model

After the mRNA is completed and cleaved off at the poly-A signal sequence, the left-over (residual) RNA strand remains bound to the DNA template and the
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryo ...
unit, continuing to be transcribed. After this cleavage, a so-called exonuclease binds to the residual RNA strand and removes the freshly transcribed nucleotides one at a time (also called 'degrading' the RNA), moving towards the bound RNA polymerase II. This exonuclease is
XRN2 5'-3' Exoribonuclease 2 (XRN2) also known as Dhm1-like protein is an exoribonuclease enzyme that in humans is encoded by the ''XRN2'' gene. The human gene encoding XRN2 shares similarity with the mouse Dhm1 and the yeast's Dhp1 (''Schizosaccharo ...
(5'-3' Exoribonuclease 2) in humans. This model proposes that XRN2 proceeds to degrade the uncapped residual RNA from 5' to 3' until it reaches the RNA pol II unit. This causes the exonuclease to 'push off' the RNA pol II unit as it moves past it, terminating the transcription while also cleaning up the residual RNA strand. Similar to Rho-dependent termination, XRN2 triggers the dissociation of RNA polymerase II by either pushing the polymerase off of the DNA template or pulling the template out of the RNA polymerase. The mechanism by which this happens remains unclear, however, and has been challenged not to be the sole cause of the dissociation. In order to protect the transcribed mRNA from degradation by the exonuclease, a 5' cap is added to the strand. This is a modified guanine added to the front of mRNA, which prevents the exonuclease from binding and degrading the RNA strand. A 3'
poly(A) tail Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euk ...
is added to the end of a mRNA strand for protection from other exonucleases as well.


Allosteric model

The allosteric model suggests that termination occurs due to the structural change of the RNA polymerase unit after binding to or losing some of its associated proteins, making it detach from the DNA strand after the signal. This would occur after the RNA pol II unit has transcribed the poly-A signal sequence, which acts as a terminator signal. RNA polymerase is normally capable of transcribing DNA into single-stranded mRNA efficiently. However, upon transcribing over the poly-A signals on the DNA template, a conformational shift is induced in the RNA polymerase from the proposed loss of associated proteins from its carboxyl terminal domain. This change of conformation reduces RNA polymerase's
processivity In molecular biology and biochemistry, processivity is an enzyme's ability to catalyze "consecutive reactions without releasing its substrate". For example, processivity is the average number of nucleotides added by a polymerase enzyme, such as ...
making the enzyme more prone to dissociating from its DNA-RNA substrate. In this case, termination is not completed by degradation of mRNA but instead is mediated by limiting the elongation efficiency of RNA polymerase and thus increasing the likelihood that the polymerase will dissociate and end its current cycle of transcription.


See also

*
Termination codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in mess ...
*
Termination factor In molecular biology, a termination factor is a protein that mediates the termination of RNA transcription by recognizing a transcription terminator and causing the release of the newly made mRNA. This is part of the process that regulates the tra ...
*
Terminator gene Genetic use restriction technology (GURT), also known as terminator technology or suicide seeds, is the name given to proposed methods for restricting the use of genetically modified crops by activating (or deactivating) some genes only in respon ...
*
Transcription (genetics) Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called ...


References


External links

* {{Transcription Gene expression