Semiprime
   HOME

TheInfoList



OR:

In mathematics, a semiprime is a
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
that is the
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of exactly two
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes.


Examples and variations

The semiprimes less than 100 are: Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes: The semiprimes are the case k=2 of the k- almost primes, numbers with exactly k prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes). These are:


Formula for number of semiprimes

A semiprime counting formula was discovered by E. Noel and G. Panos in 2005. Let \pi_2(n) denote the number of semiprimes less than or equal to n. Then \pi_2(n) = \sum_^ pi(n/p_k) - k + 1 /math> where \pi(x) is the prime-counting function and p_k denotes the ''k''th prime.


Properties

Semiprime numbers have no
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
s as factors other than themselves. For example, the number 26 is semiprime and its only factors are 1, 2, 13, and 26, of which only 26 is composite. For a squarefree semiprime n=pq (with p\ne q) the value of Euler's totient function \varphi(n) (the number of positive integers less than or equal to n that are
relatively prime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
to n) takes the simple form \varphi(n)=(p-1)(q-1)=n-(p+q)+1. This calculation is an important part of the application of semiprimes in the RSA cryptosystem. For a square semiprime n=p^2, the formula is again simple: \varphi(n)=p(p-1)=n-p.


Applications

Semiprimes are highly useful in the area of cryptography and
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, most notably in public key cryptography, where they are used by RSA and
pseudorandom number generator A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generate ...
s such as
Blum Blum Shub Blum Blum Shub (B.B.S.) is a pseudorandom number generator proposed in 1986 by Lenore Blum, Manuel Blum and Michael Shub that is derived from Michael O. Rabin's one-way function. __TOC__ Blum Blum Shub takes the form :x_ = x_n^2 \bmod M, where ...
. These methods rely on the fact that finding two large primes and multiplying them together (resulting in a semiprime) is computationally simple, whereas finding the original factors appears to be difficult. In the
RSA Factoring Challenge The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptogr ...
,
RSA Security RSA Security LLC, formerly RSA Security, Inc. and doing business as RSA, is an American computer and network security company with a focus on encryption and encryption standards. RSA was named after the initials of its co-founders, Ron Rive ...
offered prizes for the factoring of specific large semiprimes and several prizes were awarded. The original RSA Factoring Challenge was issued in 1991, and was replaced in 2001 by the New RSA Factoring Challenge, which was later withdrawn in 2007. In 1974 the Arecibo message was sent with a radio signal aimed at a star cluster. It consisted of 1679 binary digits intended to be interpreted as a 23 \times 73
bitmap In computing, a bitmap is a mapping from some domain (for example, a range of integers) to bits. It is also called a bit array or bitmap index. As a noun, the term "bitmap" is very often used to refer to a particular bitmapping application: t ...
image. The number 1679=23\cdot 73 was chosen because it is a semiprime and therefore can be arranged into a rectangular image in only two distinct ways (23 rows and 73 columns, or 73 rows and 23 columns).


See also

* Chen's theorem


References


External links

* {{Classes of natural numbers Integer sequences Prime numbers Theory of cryptography