Multielectrode array
   HOME

TheInfoList



OR:

Microelectrode arrays (MEAs) (also referred to as multielectrode arrays) are devices that contain multiple (tens to thousands)
microelectrode A microelectrode is an electrode used in electrophysiology either for recording neural signals or for the electrical stimulation of nervous tissue (they were first developed by Ida Hyde in 1921). Pulled glass pipettes with tip diameters of 0. ...
s through which neural
signals In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The ''IEEE Transactions on Signal Processing'' ...
are obtained or delivered, essentially serving as neural interfaces that connect
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s to
electronic circuitry An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical ...
. There are two general classes of MEAs: implantable MEAs, used ''
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
'', and non-implantable MEAs, used ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology ...
''.


Theory

Neurons and muscle cells create
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
currents through their membranes when excited, causing a change in
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
between the inside and the outside of the cell. When recording, the
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s on an MEA transduce the change in
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
from the environment carried by
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
into currents carried by
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
(electronic currents). When stimulating,
electrodes An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials dep ...
transduce electronic currents into ionic currents through the media. This triggers the voltage-gated ion channels on the membranes of the excitable cells, causing the cell to depolarize and trigger an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
if it is a neuron or a twitch if it is a muscle cell. The size and shape of a recorded signal depend upon several factors: the nature of the medium in which the cell or cells are located (e.g. the medium's electrical conductivity,
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized ar ...
, and
homogeneity Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the Uniformity (chemistry), uniformity of a Chemical substance, substance or organism. A material or image that is homogeneous is uniform in compos ...
); the nature of contact between the cells and the MEA electrode (e.g. area of contact and tightness); the nature of the MEA electrode itself (e.g. its geometry, impedance, and noise); the
analog signal processing Analog signal processing is a type of signal processing conducted on continuous analog signals by some analog means (as opposed to the discrete digital signal processing where the signal processing is carried out by a digital process). "Analog" indi ...
(e.g. the system's gain,
bandwidth Bandwidth commonly refers to: * Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range * Bandwidth (computing), the rate of data transfer, bit rate or thr ...
, and behavior outside of cutoff frequencies); and the data sampling properties (e.g.
sampling rate In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or s ...
and digital signal processing). For the recording of a single cell that partially covers a planar electrode, the voltage at the
contact pad Contact pads or bond pads are designated surface areas of a printed circuit board (PCB) or die of an integrated circuit. Possibilities to contact to pads include soldering, wirebonding, flip chip Flip chip, also known as controlled collapse ...
is approximately equal to the voltage of the overlapping region of the cell and electrode multiplied by the ratio the surface area of the overlapping region to the area of the entire electrode, or: V_=V_\times\frac assuming the area around an electrode is well-insulated and has a very small capacitance associated with it. The equation above, however, relies on modeling the electrode, cells, and their surroundings as an equivalent
circuit diagram A circuit diagram (wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram s ...
. An alternative means of predicting cell-electrode behavior is by modeling the system using a geometry-based finite element analysis in an attempt to circumvent the limitations of oversimplifying the system in a lumped circuit element diagram. An MEA can be used to perform
electrophysiological Electrophysiology (from Greek , ''ēlektron'', "amber" etymology of "electron"">Electron#Etymology">etymology of "electron" , ''physis'', "nature, origin"; and , ''-logia'') is the branch of physiology that studies the electrical properties of bi ...
experiments on tissue slices or dissociated cell cultures. With acute tissue slices, the connections between the cells within the tissue slices prior to extraction and plating are more or less preserved, while the intercellular connections in dissociated cultures are destroyed prior to plating. With dissociated neuronal cultures, the neurons spontaneously form
networks Network, networking and networked may refer to: Science and technology * Network theory, the study of graphs as a representation of relations between discrete objects * Network science, an academic field that studies complex networks Mathematics ...
. It can be seen that the voltage
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
an electrode experiences is inversely related to the distance from which a cell depolarizes. Thus, it may be necessary for the cells to be cultured or otherwise placed as close to the electrodes as possible. With tissue slices, a layer of electrically passive dead cells form around the site of incision due to edema. A way to deal with this is by fabricating an MEA with three-dimensional electrodes fabricated by masking and chemical etching. These 3-D electrodes penetrate the dead cell layer of the slice tissue, decreasing the distance between live cells and the electrodes. In dissociated cultures, proper adherence of the cells to the MEA substrate is important for getting robust signals.


History

The first implantable arrays were microwire arrays developed in the 1950s. The first experiment involving the use of an array of planar electrodes to record from cultured cells was conducted in 1972 by C.A. Thomas, Jr. and his colleagues. The experimental setup used a 2 x 15 array of
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
electrodes plated with
platinum black Platinum black (Pt black) is a fine powder of platinum with good catalytic properties. The name of platinum black is due to its black color. It is used in many ways; as a thin film electrode, a fuel cell membrane catalyst, or as a catalytic igniti ...
, each spaced 100 µm apart from each other.
Myocytes A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscl ...
harvested from embryonic chicks were dissociated and cultured onto the MEAs, and signals up to 1 mV high in amplitude were recorded. MEAs were constructed and used to explore the electrophysiology of snail ganglia independently by Guenter Gross and his colleagues at the Center for Network Neuroscience in 1977 without prior knowledge of Thomas and his colleagues' work. In 1982, Gross observed spontaneous electrophysiological activity from dissociated
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
neurons, and found that activity was very dependent on temperature. Below about 30˚C signal amplitudes decrease rapidly to relatively small value at room temperature. Before the 1990s, significant
entry barrier In theories of competition in economics, a barrier to entry, or an economic barrier to entry, is a fixed cost that must be incurred by a new entrant, regardless of production or sales activities, into a market that incumbents do not have or have ...
s existed for new laboratories that sought to conduct MEA research due to the custom MEA fabrication and software they had to develop. However, with the advent of affordable computing power and commercial MEA hardware and software, many other laboratories were able to undertake research using MEAs.


Types

Microelectrode arrays can be divided up into subcategories based on their potential use: ''in vitro'' and ''in vivo'' arrays.


''In vitro'' arrays

The standard type of ''in vitro'' MEA comes in a pattern of 8 x 8 or 6 x 10 electrodes. Electrodes are typically composed of
indium tin oxide Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can be described as either a ceramic or an alloy. Indium tin oxide is typically encountered as an oxygen-saturated ...
or
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
and have diameters between 10 and 30 μm. These arrays are normally used for single-cell cultures or acute brain slices. One challenge among ''in vitro'' MEAs has been imaging them with
microscopes A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisib ...
that use high power lenses, requiring low working distances on the order of micrometers. In order to avoid this problem, "thin"-MEAs have been created using cover slip glass. These arrays are approximately 180 μm allowing them to be used with high-power lenses. In another special design, 60 electrodes are split into 6 × 5 arrays separated by 500 μm. Electrodes within a group are separated by 30 um with diameters of 10 μm. Arrays such as this are used to examine local responses of neurons while also studying functional connectivity of organotypic slices. Spatial resolution is one of the key advantages of MEAs and allows signals sent over a long distance to be taken with higher precision when a high-density MEA is used. These arrays usually have a square grid pattern of 256 electrodes that cover an area of 2.8 by 2.8 mm. Increased spatial resolution is provided by CMOS-based high-density microelectrode arrays featuring thousands of electrodes along with integrated readout and stimulation circuits on compact chips of the size of a thumbnail. Even the resolution of signals propagating along single axons has been demonstrated. In order to obtain quality signals electrodes and tissue must be in close contact with one another. The perforated MEA design applies negative
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
to openings in the substrate so that tissue slices can be positioned on the electrodes to enhance contact and recorded signals. A different approach to lower the electrode impedance is by modification of the interface material, for example by using
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
, or by modification of the structure of the electrodes, with for example gold nanopillars or nanocavities.


''In vivo'' arrays

The three major categories of implantable MEAs are microwire,
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
-based, and flexible microelectrode arrays. Microwire MEAs are largely made of stainless steel or
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
and they can be used to estimate the position of individual recorded neurons by triangulation. Silicon-based microelectrode arrays include two specific models: the Michigan and Utah arrays. Michigan arrays allow a higher density of sensors for implantation as well as a higher spatial resolution than microwire MEAs. They also allow signals to be obtained along the length of the shank, rather than just at the ends of the shanks. In contrast to Michigan arrays, Utah arrays are 3-D, consisting of 100 conductive silicon needles. However, in a Utah array, signals are only received from the tips of each electrode, which limits the amount of information that can be obtained at one time. Furthermore, Utah arrays are manufactured with set dimensions and parameters while the Michigan array allows for more design freedom. Flexible arrays, made with polyimide,
parylene Parylene is the common name of a polymer whose backbone consists of ''para''- benzenediyl rings –– connected by 1,2-ethanediyl bridges –––. It can be obtained by polymerization of ''para''-xylylene . The name is also used for se ...
, or
benzocyclobutene Benzocyclobutene (BCB) is a benzene ring fused to a cyclobutane ring. It has chemical formula . BCB is frequently used to create photosensitive polymers. BCB-based polymer dielectrics may be spun on or applied to various substrates for use in ...
, provide an advantage over rigid microelectrode arrays because they provide a closer mechanical match, as the
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied le ...
of silicon is much larger than that of brain tissue, contributing to shear-induced
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
.


Data processing methods

The fundamental unit of communication of neurons is, electrically, at least, the action potential. This all-or-nothing phenomenon originates at the
axon hillock The axon hillock is a specialized part of the cell body (or soma) of a neuron that connects to the axon. It can be identified using light microscopy from its appearance and location in a neuron and from its sparse distribution of Nissl substance. ...
, resulting in a depolarization of the intracellular environment which propagates down the
axon An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action p ...
. This ion flux through the cellular membrane generates a sharp change in voltage in the extracellular environment, which is what the MEA electrodes ultimately detect. Thus, voltage spike counting and sorting is often used in research to characterize network activity. Spike train analysis, can also save processing time and computing memory compared to voltage measurements. Spike timestamps are identified as times where the voltage measured by an individual electrode exceeds a threshold (often defined by standard deviations from the mean of an inactive time period). These timestamps can be further processed to identify bursts(multiple spikes in close proximity). Further analysis of these trains can reveal spike organization and temporal patterns.


Capabilities


Advantages

In general, the major strengths of ''in vitro'' arrays when compared to more traditional methods such as
patch clamp The patch clamp technique is a laboratory technique in electrophysiology used to study ionic currents in individual isolated living cells, tissue sections, or patches of cell membrane. The technique is especially useful in the study of excita ...
ing include: *Allowing the placement of multiple electrodes at once rather than individually *The ability to set up controls within the same experimental setup (by using one electrode as a control and others as experimental). This is of particular interest in stimulation experiments. *The ability to select different recordings sites within the array *The ability to simultaneously receive data from multiple sites *Recordings from intact retinae are of great interest because of the possibility of delivering real-time optical stimulation and, for instance, the possibility of reconstructing receptive fields. Furthermore, ''in vitro'' arrays are non-invasive when compared to patch clamping because they do not require breaching of the cell membrane. With respect to ''in vivo'' arrays however, the major advantage over patch clamping is the high spatial resolution. Implantable arrays allow signals to be obtained from individual neurons enabling information such as position or
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
of motor movement that can be used to control a
prosthetic In medicine, a prosthesis (plural: prostheses; from grc, πρόσθεσις, prósthesis, addition, application, attachment), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trau ...
device. Large-scale, parallel recordings with tens of implanted electrodes are possible, at least in rodents, during animal behavior. This makes such extracellular recordings the method of choice to identify of neural circuits and to study their functions. Unambiguous identification of the recorded neuron using multi-electrode extracellular arrays, however, remains a problem to date.


Disadvantages

''In vitro'' MEAs are less suited for recording and stimulating single cells due to their low spatial resolution compared to patch clamp and
dynamic clamp Dynamics (from Greek δυναμικός ''dynamikos'' "powerful", from δύναμις ''dynamis'' " power") or dynamic may refer to: Physics and engineering * Dynamics (mechanics) ** Aerodynamics, the study of the motion of air ** Analytical dyna ...
systems. The complexity of signals an MEA electrode could effectively transmit to other cells is limited compared to the capabilities of dynamic clamps. There are also several biological responses to implantation of a microelectrode array, particularly in regards to chronic implantation. Most notable among these effects are neuronal cell loss,
glial scarring Glial scar formation (gliosis) is a reactive cellular process involving astrogliosis that occurs after injury to the central nervous system. As with scarring in other organs and tissues, the glial scar is the body's mechanism to protect and begin ...
, and a drop in the number of functioning electrodes. The tissue response to implantation is dependent among many factors including size of the MEA shanks, distance between the shanks, MEA material composition, and time period of insertion. The tissue response is typically divided into short term and long term response. The short term response occurs within hours of implantation and begins with an increased population of
astrocytes Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endo ...
and
glial cells Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
surrounding the device. The recruited microglia then initiate inflammation and a process of
phagocytosis Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is ...
of the foreign material begins. Over time, the astrocytes and microglia recruited to the device begin to accumulate, forming a sheath surrounding the array that extends tens of micrometres around the device. This not only increases the space between electrode probes, but also insulates the electrodes and increases impedance measurements. Problems with chronic implantation of arrays have been a driving force in the research of these devices. One novel study examined the
neurodegenerative A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
effects of inflammation caused by chronic implantation.
Immunohistochemical Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to ant ...
markers showed a surprising presence of hyperphosphorylated tau, an indicator of Alzheimer's disease, near the electrode recording site. The phagocytosis of electrode material also brings into question the issue of a biocompatibility response, which research suggests has been minor and becomes almost nonexistent after 12 weeks ''in vivo''. Research into minimizing the negative effects of device insertion includes surface coating of the devices with proteins that encourage neuron attachment, such as
laminin Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major components of the basal lamina (one of the layers of the basement membrane), the protein network foundation for most cells and organs. The laminins ...
, or drug eluting substances.


Applications


''In vitro''

The nature of dissociated
neuronal network A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Neural circuits interconnect to one another to form large scale brain networks. Biological neural networks have inspired the ...
s does not seem to change or diminish the character of its
pharmacological Pharmacology is a branch of medicine, biology and pharmaceutical sciences concerned with drug or medication action, where a drug may be defined as any artificial, natural, or endogenous (from within the body) molecule which exerts a biochemica ...
response when compared to ''in vivo'' models, suggesting that MEAs can be used to study pharmacological effects on dissociated neuronal cultures in a more simple, controlled environment. A number of pharmacological studies using MEAs on dissociated neuronal networks, e.g. studies with
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
. Interlaboratory validation has been conducted using MEAs. In addition, a substantial body of work on various biophysical aspects of network function was carried out by reducing phenomena usually studied at the behavioral level to the dissociated cortical network level. For example, the capacity of such networks to extract spatial and temporal features of various input signals, dynamics of synchronization, sensitivity to
neuromodulation Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second ...
and kinetics of learning using closed loop regimes. Finally, combining MEA technology with
confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a s ...
allows for studying relationships between network activity and synaptic remodeling. MEAs have been used to interface neuronal networks with non-biological systems as a controller. For example, a neural-computer interface can be created using MEAs. Dissociated rat cortical neurons were integrated into a closed stimulus-response feedback loop to control an animat in a virtual environment. A closed-loop stimulus-response system has also been constructed using an MEA by Potter, Mandhavan, and DeMarse, and by Mark Hammond,
Kevin Warwick Kevin Warwick (born 9 February 1954) is an English engineer and Deputy Vice-Chancellor (Research) at Coventry University. He is known for his studies on direct interfaces between computer systems and the human nervous system, and has also done ...
, and Ben Whalley in the
University of Reading The University of Reading is a public university in Reading, Berkshire, England. It was founded in 1892 as University College, Reading, a University of Oxford extension college. The institution received the power to grant its own degrees in 192 ...
. About 300,000 dissociated rat neurons were plated on an MEA, which was connected to motors and
ultrasound Ultrasound is sound waves with frequencies higher than the upper audible limit of human hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies ...
sensors on a robot, and was conditioned to avoid obstacles when sensed. Along these lines, Shimon Marom and colleagues in the Technion hooked dissociated neuronal networks growing on MEAs to a
Lego Mindstorms Lego Mindstorms is a hardware and software structure which develops programmable robots based on Lego building blocks. Each version includes computer Lego bricks, a set of modular sensors and motors, and Lego parts from the Technic line to ...
robot; the visual field of the robot was classified by the network, and commands were delivered to the robot wheels such that it completely avoids bumping into obstacles. This "Braitenberg vehicle" was used to demonstrate the indeterminacy of reverse neuro-engineering showing that even in a simple setup with practically unlimited access to every piece of relevant information, it was impossible to deduce with certainty the specific
neural coding Neural coding (or Neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activit ...
scheme that was used to drive the robots behavior. MEAs have been used to observe network firing in
hippocampal The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, an ...
slices.


''In vivo''

There are several implantable interfaces that are currently available for consumer use including deep brain stimulators,
cochlear implants A cochlear implant (CI) is a surgically implanted neuroprosthesis that provides a person who has moderate-to-profound sensorineural hearing loss with sound perception. With the help of therapy, cochlear implants may allow for improved speech unde ...
, and
cardiac pacemaker 350px, Image showing the cardiac pacemaker or SA node, the primary pacemaker within the electrical_conduction_system_of_the_heart">SA_node,_the_primary_pacemaker_within_the_electrical_conduction_system_of_the_heart. The_muscle_contraction.htm ...
s. Deep brain stimulation (DBS) has been effective at treating movement disorders such as
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
, and cochlear implants have helped many to improve their hearing by assisting stimulation of the
auditory nerve The cochlear nerve (also auditory nerve or acoustic nerve) is one of two parts of the vestibulocochlear nerve, a cranial nerve present in amniotes, the other part being the vestibular nerve. The cochlear nerve carries auditory sensory information ...
. Because of their remarkable potential, MEAs are a prominent area of neuroscience research. Research suggests that MEAs may provide insight into processes such as memory formation and perception and may also hold therapeutic value for conditions such as
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrica ...
, depression, and obsessive-compulsive disorder . Clinical trials using interface devices for restoring motor control after spinal cord injury or as treatment for ALS have been initiated in a project entitled BrainGate (see video demo
BrainGate
. MEAs provide the high resolution necessary to record time varying signals, giving them the ability to be used to both control and obtain feedback from prosthetic devices, as was shown by
Kevin Warwick Kevin Warwick (born 9 February 1954) is an English engineer and Deputy Vice-Chancellor (Research) at Coventry University. He is known for his studies on direct interfaces between computer systems and the human nervous system, and has also done ...
,
Mark Gasson Mark N. Gasson is a British scientist and visiting research fellow at the Cybernetics Research Group, University of Reading, UK. He pioneered developments in direct neural interfaces between computer systems and the human nervous system, has devel ...
and Peter Kyberd. Research suggests that MEA use may be able to assist in the restoration of vision by stimulating the optic pathway.


MEA user meetings

A biannual scientific user meeting is held in
Reutlingen Reutlingen (; Swabian: ''Reitlenga'') is a city in Baden-Württemberg, Germany. It is the capital of the eponymous district of Reutlingen. As of June 2018, it has a population of 115,818. Reutlingen has a university of applied sciences, which ...
, organized by the Natural and Medical Sciences Institute (NMI) at the
University of Tübingen The University of Tübingen, officially the Eberhard Karl University of Tübingen (german: Eberhard Karls Universität Tübingen; la, Universitas Eberhardina Carolina), is a public research university located in the city of Tübingen, Baden-W ...
. The meetings offer a comprehensive overview of all aspects related to new developments and current applications of Microelectrode Arrays in basic and applied neuroscience as well as in industrial drug discovery, safety pharmacology and neurotechnology. The biannual conference has developed into an international venue for scientists developing and using MEAs from both industry and academia, and is recognized as an information-packed scientific forum of high quality. The meeting contributions are available as open access proceeding books.


Use in art

In addition to being used for scientific purposes, MEAs have been used in
contemporary art Contemporary art is the art of today, produced in the second half of the 20th century or in the 21st century. Contemporary artists work in a globally influenced, culturally diverse, and technologically advancing world. Their art is a dynamic co ...
to investigate philosophical questions about the relationship between technology and biology. Traditionally within Western thought, biology and technology have been separated into two distinct categories: '' bios'' and '' technê.'' In 2002, ''MEART: The Semi-living Artist'' was created as a collaborative art and science project between SymbioticA at the
University of Western Australia The University of Western Australia (UWA) is a public research university in the Australian state of Western Australia. The university's main campus is in Perth, the state capital, with a secondary campus in Albany and various other facilitie ...
in
Perth Perth is the capital and largest city of the Australian state of Western Australia. It is the fourth most populous city in Australia and Oceania, with a population of 2.1 million (80% of the state) living in Greater Perth in 2020. Perth i ...
, and the Potter Lab at the Georgia Institute of Technology in
Atlanta Atlanta ( ) is the capital and most populous city of the U.S. state of Georgia. It is the seat of Fulton County, the most populous county in Georgia, but its territory falls in both Fulton and DeKalb counties. With a population of 498,715 ...
, to question the relationship between biology and technology.SymbioticA research Group (2002) MEART – the semi living artist (AKA Fish & Chips) Stage 2 pp.60-68. in BEAP, Biennale of Electronic Art, 2002: The Exhibitions. Thomas, Paul, Ed., Pub. Curtin University. . ''MEART'' consisted of rat cortical neurons grown ''in vitro'' on an MEA in Atlanta, a pneumatic robot arm capable of drawing with pens on paper in Perth, and software to govern communications between the two. Signals from the neurons were relayed in a closed-loop between Perth and Atlanta as the MEA stimulated the pneumatic arm. ''MEART'' was first exhibited to the public in the exhibition ''Biofeel'' at the Perth Institute of Contemporary Arts in 2002.


See also

*
Animat Animat are artificial animals and is a contraction of animal and materials. The term includes physical robots and virtual simulations. The animat model includes features of a simple animal capable of interacting with its environment. It is, therefo ...
*
Artificial cardiac pacemaker An artificial cardiac pacemaker (or artificial pacemaker, so as not to be confused with the natural cardiac pacemaker) or pacemaker is a medical device that generates electrical impulses delivered by electrodes to the chambers of the heart ei ...
*
Deep brain stimulation Deep brain stimulation (DBS) is a neurosurgical procedure involving the placement of a medical device called a neurostimulator, which sends electrical impulses, through implanted electrodes, to specific targets in the brain (the brain nucleus ...
*
Patch clamp The patch clamp technique is a laboratory technique in electrophysiology used to study ionic currents in individual isolated living cells, tissue sections, or patches of cell membrane. The technique is especially useful in the study of excita ...
*
Bioelectronics Bioelectronics is a field of research in the convergence of biology and electronics. Definitions At the first C.E.C. Workshop, in Brussels in November 1991, bioelectronics was defined as 'the use of biological materials and biological architectu ...


References

{{Reflist, 30em Neurophysiology Physiology Electrophysiology Laboratory techniques