The principle of complete induction is not only valid for statements about natural numbers but for statements about elements of any well-founded set, that is, a set with an irreflexive relation < that contains no infinite descending chains. Any set of cardinal numbers is well-founded, which includes the set of natural numbers.
Applied to a well-founded set, it can be formulated as a single step:
This form of induction, when applied to a set of ordinals (which form a well-ordered and hence well-founded class), is called transfinite induction. It is an important proof technique in set theory, topology and other fields.
Proofs by transfinite induction typically distinguish three cases:
Strictly speaking, it is not necessary in transfinite induction to prove a base case, because it is a vacuous special case of the proposition that if P is true of all n < m, then P is true of m. It is vacuously true p
The principle of complete induction is not only valid for statements about natural numbers but for statements about elements of any well-founded set, that is, a set with an irreflexive relation < that contains no infinite descending chains. Any set of cardinal numbers is well-founded, which includes the set of natural numbers.
Applied to a well-founded set, it can be formulated as a single step:
This form of induction, when applied to a set of ordinals (which form a well-ordered and hence well-founded class), is called ordinals (which form a well-ordered and hence well-founded class), is called transfinite induction. It is an important proof technique in set theory, topology and other fields.
Proofs by transfinite induction typically distinguish three cases:
Proofs by transfinite induction typically distinguish three cases:
Strictly speaking, it is not necessary in transfinite induction to prove a base case, because it is a vacuous special case of the proposition that if P is true of all n < m, then P is true of m. It is vacuously true precisely because there are no values of n < m that could serve as counterexamples. So the special cases are special cases of the general case.