HOME
        TheInfoList






Test launch of an LGM-25C Titan II ICBM from an underground silo at Vandenberg AFB, United States, mid-1970s

An intercontinental ballistic missile (ICBM) is a missile with a minimum range of 5,500 kilometres (3,400 mi)[1] primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads). Similarly, conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicles (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. Russia, United States, China, France, India, United Kingdom, and North Korea are the only countries that have operational ICBMs.

Early ICBMs had limited precision, which made them suitable for use only against the largest targets, such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets (especially hardened ones) still demanded the use of a more precise, manned bomber. Second- and third-generation designs (such as the LGM-118 Peacekeeper) dramatically improved accuracy to the point where even the smallest point targets can be successfully attacked.

ICBMs are differentiated by having greater range and speed than other ballistic missiles: intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs), short-range ballistic missiles (SRBMs) and tactical ballistic missiles (TBMs). Short and medium-range ballistic missiles are known collectively as theatre ballistic missiles.

History

World War II

missile with a minimum range of 5,500 kilometres (3,400 mi)[1] primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads). Similarly, conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicles (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. Russia, United States, China, France, India, United Kingdom, and North Korea are the only countries that have operational ICBMs.

Early ICBMs had limited precision, which made them suitable for use only against the largest targets, such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets (especially hardened ones) still demanded the use of a more precise, manned bomber. Second- and third-generation designs (such as the LGM-118 Peacekeeper) dramatically improved accuracy to the point where even the smallest point targets can be successfully attacked.

ICBMs are differentiated by having greater range and speed than other ballistic missiles:

Early ICBMs had limited precision, which made them suitable for use only against the largest targets, such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets (especially hardened ones) still demanded the use of a more precise, manned bomber. Second- and third-generation designs (such as the LGM-118 Peacekeeper) dramatically improved accuracy to the point where even the smallest point targets can be successfully attacked.

ICBMs are differentiated by having greater range and speed than other ballistic missiles: intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs), short-range ballistic missiles (SRBMs) and tactical ballistic missiles (TBMs). Short and medium-range ballistic missiles are known collectively as theatre ballistic missiles.

The first practical design for an ICBM grew out of Nazi Germany's V-2 rocket program. The liquid-fueled V-2, designed by Wernher von Braun and his team, was widely used at the end of World War II to bomb British and Belgian cities.

Under Projekt Amerika, von Braun's team developed the A9/10 ICBM, intended for use in bombing New York and other American cities. Initially intended to be guided by radio, it was changed to be a piloted craft after the failure of Operation Elster. The second stage of the A9/A10 rocket was tested a few times in January and February 1945.

After the war, the U.S. executed Operation Paperclip, which brought von Braun and hundreds of other leading German scientists to the United States to develop IRBMs, ICBMs, and launchers for the U.S. Army.

This technology was predicted by U.S. Army General Hap Arnold, who wrote in 1943:

Someday, not too distant, there can come streaking out of somewhere – we won't be able to hear it, it will come so fast – some kind of gadget with an explosive so powerful that one projectile will be able to wipe out completely this city of Washington.[2][3]

Cold War

After World War II, the U.S. and USSR started rocket research programs based on the V-2 and other German wartime designs. Each branch of the U.S. military started its own programs, leading to considerable duplication of effort. In the USSR, rocket research was centrally organized, although several teams worked on different designs.

In the USSR, early development was focused on missiles able to attack European targets. This changed in 1953 when Sergei Korolyov was directed to start development of a true ICBM able to deliver newly developed hydrogen bombs. Given steady funding throughout, the R-7 developed with some speed. The first launch took place on 15 May 1957 and led to an unintended crash 400 km (250 mi) from the site. The first successful test followed on 21 August 1957; the R-7 flew over 6,000 km (3,700 mi) and became the world's first ICBM.[4] The first strategic-missile unit became operational on 9 February 1959 at Plesetsk in north-west Russia.[5]

It was the same R-7 launch vehicle that placed the first artificial satellite in space, Sputnik, on 4 October 1957. The first human spaceflight in history was accomplished on a derivative of R-7, Vost

Under Projekt Amerika, von Braun's team developed the A9/10 ICBM, intended for use in bombing New York and other American cities. Initially intended to be guided by radio, it was changed to be a piloted craft after the failure of Operation Elster. The second stage of the A9/A10 rocket was tested a few times in January and February 1945.

After the war, the U.S. executed Operation Paperclip, which brought von Braun and hundreds of other leading German scientists to the United States to develop IRBMs, ICBMs, and launchers for the U.S. Army.

This technology was predicted by U.S. Army General Hap Arnold, who wrote in 1943:

Someday, not too distant, there can come streaking out of somewhere – we won't be able to hear it, it will come so fast – some kind of gadget with an explosive so powerful that one projectile will be able to wipe out completely this city of Washington.[2][3]

Cold War

Schematic view of a submarine-launched Trident II D5 nuclear missile system, capable of carrying multiple nuclear warheads up to 8,000 km (5,000 mi)

Modern ICBMs typically carry multiple independently targetable reentry vehicles (MIRVs), each of which carries a separate nuclear warhead, allowing a single missile to hit multiple targets. MIRV was an outgrowth of the rapidly shrinking size and weight of modern warheads and the Strategic Arms Limitation Treaties (SALT I and SALT II), which imposed limitations on the number of launch vehicles. It has also proved to be an "easy answer" to proposed deployments of multiple independently targetable reentry vehicles (MIRVs), each of which carries a separate nuclear warhead, allowing a single missile to hit multiple targets. MIRV was an outgrowth of the rapidly shrinking size and weight of modern warheads and the Strategic Arms Limitation Treaties (SALT I and SALT II), which imposed limitations on the number of launch vehicles. It has also proved to be an "easy answer" to proposed deployments of anti-ballistic missile (ABM) systems: It is far less expensive to add more warheads to an existing missile system than to build an ABM system capable of shooting down the additional warheads; hence, most ABM system proposals have been judged to be impractical. The first operational ABM systems were deployed in the United States during the 1970s. The Safeguard ABM facility, located in North Dakota, was operational from 1975 to 1976. The USSR deployed its ABM-1 Galosh system around Moscow in the 1970s, which remains in service. Israel deployed a national ABM system based on the Arrow missile in 1998,[29] but it is mainly designed to intercept shorter-ranged theater ballistic missiles, not ICBMs. The Alaska-based United States national missile defense system attained initial operational capability in 2004.[30]

missile silos, which offer some protection from military attack (including, the designers hope, some protection from a nuclear first strike)
  • on submarines: submarine-launched ballistic missiles (SLBMs); most or all SLBMs have the long range of ICBMs (as opposed to IRBMs)
  • on heavy trucks; this applies to one version of the Topol which may be deployed from a self-propelled mobile launcher, capable of moving through roadless terrain, and launching a missile from any point along its route
  • mobile launchers on rails; this applies, for example, to РТ-23УТТХ "Молодец" (RT-23UTTH "Molodets" – SS-24 "Scalpel")
  • The last three kinds are mobile and therefore hard to find. During storage, one of the most important features of the missile is its serviceability. One of the key features of the first computer-controlled ICBM, the Minuteman missile, was that it could quickly and easily use its computer to test itself.

    computer-controlled ICBM, the Minuteman missile, was that it could quickly and easily use its computer to test itself.

    Artist's concept of an SS-24 deployed on railway

    After launch, a booster pushes the missile and then falls away. Most modern boosters are solid-fueled rocket motors, which can be stored easily for long periods of time. Early missiles used liqu

    After launch, a booster pushes the missile and then falls away. Most modern boosters are solid-fueled rocket motors, which can be stored easily for long periods of time. Early missiles used liquid-fueled rocket motors. Many liquid-fueled ICBMs could not be kept fueled all the time as the cryogenic fuel liquid oxygen boiled off and caused ice formation, and therefore fueling the rocket was necessary before launch. This procedure was a source of significant operational delay, and might allow the missiles to be destroyed by enemy counterparts before they could be used. To resolve this problem the United Kingdom invented the missile silo that protected the missile from a first strike and also hid fuelling operations underground.

    Once the booster falls away, the remaining "bus" releases several warheads, each of which continues on its own unpowered ballistic trajectory, much like an artillery shell or cannonball. The warhead is encased in a cone-shaped reentry vehicle and is difficult to detect in this phase of flight as there is no rocket exhaust or other emissions to mark its position to defenders. The high speeds of the warheads make them difficult to intercept and allow for little warning, striking targets many thousands of kilometers away from the launch site (and due to the possible locations of the submarines: anywhere in the world) within approximately 30 minutes.

    Many authorities say that missiles also release aluminized balloons

    Once the booster falls away, the remaining "bus" releases several warheads, each of which continues on its own unpowered ballistic trajectory, much like an artillery shell or cannonball. The warhead is encased in a cone-shaped reentry vehicle and is difficult to detect in this phase of flight as there is no rocket exhaust or other emissions to mark its position to defenders. The high speeds of the warheads make them difficult to intercept and allow for little warning, striking targets many thousands of kilometers away from the launch site (and due to the possible locations of the submarines: anywhere in the world) within approximately 30 minutes.

    Many authorities say that missiles also release aluminized balloons, electronic noise-makers, and other items intended to confuse interception devices and radars.

    As the nuclear warhead reenters the Earth's atmosphere its high speed causes compression of the air, leading to a dramatic rise in temperature which would destroy it if it were not shielded in some way. As a result, warhead components are contained within an aluminium honeycomb substructure, sheathed in a pyrolytic carbon-epoxy synthetic resin composite material heat shield. Warheads are also often radiation-hardened (to protect against nuclear-tipped ABMs or the nearby detonation of friendly warheads), one neutron-resistant material developed for this purpose in the UK is three-dimensional quartz phenolic.

    Circular error probable is crucial, because halving the circular error probable decreases the needed warhead energy by a factor of four. Accuracy is limited by the accuracy of the navigation system and the available geodetic information.

    Strategic missile systems are thought to use custom integrated circuits designed to calculate navigational differential equations thousands to millions of FLOPS in order to reduce navigational errors caused by calculation alone. These circuits are usually a network of binary addition circuits that continually recalculate the missile's position. The inputs to the navigation circuit are set by a general purpose computer according to a navigational input schedule loaded into the missile before launch.

    One particular weapon developed by the Soviet Union – the Fractional Orbital Bombardment System – had a partial orbital trajectory, and unlike most ICBMs its target could not be deduced from its orbital flight path. It was decommissioned in compliance with arms control agreements, which address the maximum range of ICBMs and prohibit orbital or fractional-orbital weapons. However, according to reports, Russia is working on the new Sarmat ICBM which leverages Fractional Orbital Bombardment concepts to use a Southern polar approach instead of flying over the Northern polar regions. Using this approach, it is theorized, avoids the US missile defense batteries in California and Alaska.

    New development of ICBM technology are ICBMs able to carry hypersonic glide vehicles as a payload such as RS-28 Sarmat.

    Specific types of ICBMs (current, past and under development) include:

    Type Minimum Range (km) Maximum Range (km) Country Status
    Ground Based Strategic Deterrent United States Under development
    LGM-30 Minuteman III 13,000 United States Operational
    LGM-30F Minuteman II 11,265 United States Decommissioned
    LGM-30A/B Minuteman I 10,186 United States Decommissioned
    LGM-118 Peacekeeper 1

    Russia, the United States, China, North Korea and India are the only countries currently known to possess land-based ICBMs, Israel has also tested ICBMs but is not open about actual deployment.[31][32]

    A Minuteman III ICBM test launch from Vandenberg Air Force Base, United States

    The United States currently operates 405 ICBMs in three USAF bases.[33] The only model deployed is LGM-30G Minuteman-III. All previous USAF Minuteman II missiles were destroyed in accordance with START II, and their launch silos have been sealed or sold to the public. The powerful MIRV-capable Peacekeeper missiles were phased out in 2005.[34]

    A Soviet R-36M (SS-18 Satan), the largest ICBM in history, with a throw weight of 8,800 kg

    The Russian Strategic Rocket Forces have 286 ICBMs able to deliver 958 nuclear warheads: 46 silo-based R-36M2 (SS-18), 30 silo-based UR-100N (SS-19), 36 mobile RT-2PM "Topol" (SS-25), 60 silo-based RT-2UTTH "Topol M" (SS-27), 18 mobile RT-2UTTH "Topol M" (SS-27), 84 mobile RS-24 "Yars" (SS-29), and 12 silo-based RS-24 "Yars" (SS-29).[35]

    China has developed several long range ICBMs, like the DF-31. The Dongfeng 5 or DF-5 is a 3-stage liquid fuel ICBM and has an estimated range of 13,000 kilometers. The DF-5 had its first flight in 1971 and was in operational service 10 years later. One of the downsides of the missile was that it took between 30 and 60 minutes to fuel. The Dong Feng 31 (a.k.a. CSS-10) is a medium-range, three-stage, solid-propellant intercontinental ballistic missile, and is a land-based variant of the submarine-launched JL-2.

    The DF-41 or CSS-X-10 can carry up to 10 nuclear warheads, which are MIRVs and has a range of approximately 12,000–14,000 km (7,500–8,700 mi).[36][37][38][39] The DF-41 deployed in underground Xinjiang, Qinghai, Gansu and Inner Mongolia area. The mysterious underground subway ICBM carrier systems they called "Underground Great Wall Project[40]".

    Israel is believed to have deployed a road mobile nuclear ICBM, the Jericho III, which entered service in 2008. It is possible for the missile to be equipped with a single 750 kg (1,650 lb) nuclear warhead or up to three MIRV warheads. It is believed to be based on the Shavit space launch vehicle and is estimated to have a range of 4,800 to 11,500 km (3,000 to 7,100 mi).[11] In November 2011 Israel tested an ICBM believed to be an upgraded version of the Jericho III.[12]

    India has a series of ballistic missiles called Agni. On 19 April 2012, India successfully test fired its first Agni-V, a three-stage solid fueled missile, with a strike range of more than 7,500 km (4,700 mi).

    Agni-V during its first test flight

    missile was test-fired for the second time on 15 September 2013.[13] On 31 January 2015, India conducted a third successful test flight of the Agni-V from the Abdul Kalam Island facility. The test used a canisterised version of the missile, mounted over a Tatra truck.[41]

    Submarine-launched

    Type NATO Name Minimum Range (km) Maximum Range (km) Country Status
    UGM-96 Trident I (C-4) 12,000 United States Decommissioned
    UGM-133 Trident II (D5LE) 12,000 United States Operational
    RSM-40[42] R-29 "Vysota" SS-N-8 "Sawfly" 7,700 Soviet Union/Russia Decommissioned
    RSM-50[42] R-29R "Vysota" SS-N-18 "Stingray" 6,500 Soviet Union/Russia Decommissioned
    RSM-52[42] R-39 "Rif" SS-N-20 "Sturgeon" 8,300 Soviet Union/Russia Decommissioned
    RSM-54 R-29RM "Shtil" SS-N-23 "Skiff" 8,300 Soviet Union/Russia Decommissioned (Under rebuild to R-29RMU "Sineva")[43]
    RSM-54 R-29RMU "Sineva" SS-N-23 "Skiff" 8,300 Soviet Union/Russia Operational
    RSM-54 R-29RMU2 "Layner" 8,300 12,000 Soviet Union/Russia Operational
    RSM-56 R-30 "Bulava" SS-NX-32[44] 8,000 8,300 Soviet Union/Russia Operational
    UGM-133 Trident II (D5) 12,000 United Kingdom Operational
    M45 6,000 France Operational
    M51 8,000 10,000 France Operational
    JL-2 7,400 8,000 China Operational
    JL-3 10,000 11,200 China Under development[45]
    K-5 2500 5,000 India Under development[46][47]
    K-6 4000 8,000 India Under development[48][49]

    Missile defense

    An anti-ballistic missile is a missile which can be deployed to counter an incoming nuclear or non-nuclear ICBM. ICBMs can be intercepted in three regions of their trajectory: boost phase, mid-course phase or terminal phase. Currently China,[50] the US, Russia, France, India and Israel have developed anti-ballistic missile systems, of which the Russian A-135 anti-ballistic missile system and the US Ground-Based Midcourse Defense systems have the capability to intercept ICBMs carrying nuclear, chemical, biological, or conventional warheads.

    See also

    References

    1. ^ "Intercontinental Ballistic Missiles". Special Weapons Primer. Federation of American Scientists. Archived from the original on 26 November 2015. Retrieved 14 December 2012.
    2. ^ Dolman, Everett C.; Cooper, Henry F., Jr. "19: Increasing the Military Uses of Space". Toward a Theory of Space Power. NDU Press. Archived from the original on 15 February 2012. Retrieved 19 April 2012.
    3. ^ Correll, John T. "World's most powerful ballistic missile". Archived from the original on 22 February 2018. Retrieved 22 February 2018. Cite journal requires |journal= (help)
    4. ^ Wade, Mark. "R-7". Encyclopedia Astronautica. Archived from the original on 29 June 2011. Retrieved 4 July 2011.
    5. ^ "This Week in EUCOM History: February 6–12, 1959". EUCOM. 6 February 2012. Archived from the original on 21 September 2012. Retrieved 8 February 2012.
    6. ^ "Atlas". The Exploration of Space. Century of Flight. Archived from the original on 11 October 2011. Retrieved 14 December 2012.
    7. ^ "Atlas D". Missile Threat. Archived from the original on 10 February 2012. Retrieved 19 April 2012.
    8. ^ "Atlas". Encyclopedia Astronautica. Astronautix. Archived from the original on 8 June 2010. Retrieved 19 April 2012.
    9. ^ "DF-5". Weapons of Mass Destruction / WMD Around the World. Federation of American Scientists.