HOME
The Info List - Daphnia


--- Advertisement ---



Daphnia, a genus of small planktonic crustaceans, are 0.2–5 millimetres (0.01–0.20 in) in length. Daphnia
Daphnia
are members of the order Cladocera, and are one of the several small aquatic crustaceans commonly called water fleas because their saltatory (Wiktionary) swimming style resembles the movements of fleas. Daphnia live in various aquatic environments ranging from acidic swamps to freshwater lakes, ponds, streams and rivers. The two most readily available species of Daphnia
Daphnia
are D. pulex (small and most common) and D. magna (large). They are often associated with a related genus in the order Cladocera: Moina, which is in the Moinidae family instead of Daphniidae
Daphniidae
and is much smaller than D. pulex (approximately half the maximum length). Daphnia eggs for sale are generally enclosed in ephippia (a thick shell, consisting of two chitinous plates, that encloses and protects the winter eggs of a cladoceran).[2]

Contents

1 Appearance and characteristics 2 Systematics and evolution 3 Ecology and behaviour 4 Life cycle 5 Conservation 6 Uses 7 Invasive species 8 See also 9 References 10 External links

Appearance and characteristics[edit]

Play media

The beating heart of Daphnia
Daphnia
under the microscope

The body of Daphnia
Daphnia
is usually 1–5 millimetres (0.04–0.20 in) long,[3] and is divided into segments, although this division is not visible.[4] The head is fused, and is generally bent down towards the body with a visible notch separating the two. In most species, the rest of the body is covered by a carapace, with a ventral gap in which the five or six pairs of legs lie.[4] The most prominent features are the compound eyes, the second antennae, and a pair of abdominal setae.[4] In many species, the carapace is translucent or nearly so and as a result they make excellent subjects for the microscope as one can observe the beating heart.[4] Even under relatively low-power microscopy, the feeding mechanism can be observed, with immature young moving in the brood pouch; moreover, the eye being moved by the ciliary muscles can be seen, as well as blood cells being pumped around the circulatory system by the simple heart.[4] The heart is at the top of the back, just behind the head, and the average heart rate is approximately 180 bpm under normal conditions. Daphnia, like many animals, are prone to alcohol intoxication, and make excellent subjects for studying the effects of the depressant on the nervous system due to the translucent exoskeleton and the visibly altered heart rate.[5] They are tolerant of being observed live under a cover slip and appear to suffer no harm when returned to open water.[4] This experiment can also be performed using caffeine, nicotine or adrenaline, each producing an increase in the heart rate.[5] Systematics and evolution[edit] Main article: List of Daphnia
Daphnia
species Daphnia
Daphnia
is a large genus – comprising over 200 species – belonging to the cladoceran family Daphniidae.[1] It is subdivided into several subgenera (Daphnia, Australodaphnia, Ctenodaphnia), but the division has been controversial and is still in development. Each subgenus has been further divided into a number of species complexes. The understanding of species boundaries has been hindered by phenotypic plasticity, hybridization, intercontinental introductions and poor taxonomic descriptions.[6][7][8] Ecology and behaviour[edit]

Anatomy of Daphnia

Overview

The five trunk limbs, used in filter-feeding

Daphnia
Daphnia
species are normally r-selected, meaning that they invest in early reproduction and so have short lifespans. An individual Daphnia life-span depends on factors such as temperature and the abundance of predators, but can be 13–14 months in some cold, oligotrophic fish-free lakes.[9] In typical conditions, however, the life cycle is much shorter, not usually exceeding 5–6 months.[9] Daphnia
Daphnia
are typically filter feeders, ingesting mainly unicellular algae and various sorts of organic detritus including protists and bacteria[3][10] Beating of the legs produces a constant current through the carapace which brings such material into the digestive tract. The trapped food particles are formed into a food bolus which then moves down the digestive tract until voided through the anus located on the ventral surface of the terminal appendage.[10] The second and third pair of legs are used in the organisms' filter feeding, ensuring large unabsorbable particles are kept out, while the other sets of legs create the stream of water rushing into the organism.[10] Swimming is powered mainly by the second set of antennae, which are larger in size than the first set.[11] The action of this second set of antennae is responsible for the jumping motion.[11] Life cycle[edit]

Resting egg pouch (ephippium) and the juvenile daphnid that just has hatched from it

Most Daphnia
Daphnia
species have a life cycle based on "cyclical parthenogenesis", alternating between parthenogenetic (asexual) reproduction and sexual reproduction.[3] For most of the growth season, females reproduce asexually. They produce a brood of diploid eggs every time they moult; these broods can contain as few as 1–2 eggs in smaller species, such as D. cucullata, but can be over 100 in larger species, such as D. magna. Under typical conditions, these eggs hatch after a day, and remain in the female's brood pouch for around three days (at 20 °C). They are then released into the water, and pass through a further 4–6 instars over 5–10 days (longer in poor conditions) before reaching an age where they are able to reproduce.[3] The asexually produced offspring are typically female. Towards the end of the growing season, however, the mode of reproduction changes, and the females produce tough "resting eggs" or "winter eggs".[3] When environmental condition deteriorate (e.g. crowding), some of the asexually produced offspring develop into males.[3] The females start producing haploid sexual eggs, which the males fertilise. In species without males, resting eggs are also produced asexually and are diploid. In either case, the resting eggs are protected by a hardened coat called the ephippium, and are cast off at the female's next moult. The ephippia can withstand periods of extreme cold, drought or lack of food availability, and hatch – when conditions improve – into females (They are close to being classed as extremophiles) .[3] Conservation[edit]

Daphnia
Daphnia
magna

Several Daphnia
Daphnia
species are considered threatened. The following are listed as vulnerable by IUCN: Daphnia
Daphnia
nivalis, Daphnia
Daphnia
coronata, Daphnia
Daphnia
occidentalis, and Daphnia
Daphnia
jollyi. Some species are halophiles, and can be found in hypersaline lake environments, an example of which is the Makgadikgadi Pan.[12] Uses[edit] Daphnia
Daphnia
spp. are a popular live food in tropical and marine fish keeping.[13] They are often fed to tadpoles or small species of amphibians such as the African dwarf frog
African dwarf frog
(Hymenochirus boettgeri). Daphnia
Daphnia
may be used in certain environments to test the effects of toxins on an ecosystem, which makes them an indicator genus, particularly useful because of its short lifespan and reproductive capabilities. Because they are nearly transparent, their internal organs are easy to study in live specimens (e.g. to study the effect of temperature on the heart rate of these ectothermic organisms). Daphnia
Daphnia
is also commonly used for experiments to test climate change aspects, as ultraviolet radiation (UVR) that seriously damage zooplankton species (e.g. decrease feeding activity[14]). Because of their thin membrane, which allows drugs to be absorbed, they are used to monitor the effects of certain drugs, such as adrenaline or capsaicin, on the heart. Invasive species[edit]

Fishhook waterflea
Fishhook waterflea
(above) and Bythotrephes longimanus
Bythotrephes longimanus
(spiny water flea) (below)

Some species of daphnia or water fleas that resemble daphnia have developed permanent, non-temporary defenses against fish eating them such as spines and long hooks on the body which also cause them to become entangled on fishing lines and cloud water with their high numbers. Species such as Bythotrephes longimanus[15][16][17][18] AKA "spiny water flea" and formerly known as Bythotrephes cederstroemi (native to Northern Europe and Asia), Cercopagis pengoi
Cercopagis pengoi
AKA "fishhook waterflea" (native in the brackish fringes of the Black Sea and the Caspian Sea) and Daphnia
Daphnia
lumholtzi[19][20][21][22] (native to east Africa, the Asian subcontinent of India, and east Australia) have these characteristics and great care should be taken to prevent them from spreading further in North American waters. Some species of daphnia native to North America can develop sharp spines at the end of the body and helmet-like structures on the head when they detect predators,[23][24] but this is overall temporary for such daphnia species and they do not completely overwhelm or discourage native predators from eating them. While daphnia are an important base of the food chain in freshwater lakes (and vernal pools), they become a nuisance when they are unable to be eaten by native macroscopic predators and there is some concern that the original spineless and hookless water fleas and daphnia end up out-competed by the invasive ones. (This may not be the case, however, and the new invaders may mostly be a tangling and clogging nuisance.) See also[edit]

Crustaceans portal

List of Daphnia
Daphnia
species Moina, which are sometimes referred to as Daphnia Rotifer Zooplankton Crustacean

References[edit]

^ a b A. Kotov; L. Forró; N. M. Korovchinsky; A. Petrusek (March 2, 2012). "Crustacea- Cladocera
Cladocera
checkList" (PDF). World checklist of freshwater Cladocera
Cladocera
species. Belgian Biodiversity
Biodiversity
Platform. Retrieved October 29, 2012.  ^ N.N.Smirnov (2014). The physiology of the Cladocera. Amsterdam: Academic Press.  ^ a b c d e f g Dieter Ebert (2005). "Introduction to Daphnia biology". Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. Bethesda, MD: National Center for Biotechnology Information. ISBN 978-1-932811-06-3.  ^ a b c d e f "Daphnia". Oneida Lake Education Initiative. Stony Brook University. Retrieved October 9, 2013.  ^ a b "Investigating factors affecting the heart rate of Daphnia". Nuffield Foundation. January 25, 2012. Retrieved October 9, 2013.  ^ Niles Lehman; Michael E. Pfrender; Phillip A. Morin; Teresa J. Crease; Michael Lynch (1995). "A hierarchical molecular phylogeny within the genus Daphnia". Molecular Phylogenetics and Evolution. 4 (4): 395–407. doi:10.1006/mpev.1995.1037. PMID 8747296.  ^ Derek J. Taylor; Paul D. N. Hebert; John K. Colbourne (1996). "Phylogenetics and evolution of the Daphnia
Daphnia
longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation" (PDF). Molecular Phylogenetics and Evolution. 5 (3): 495–510. doi:10.1006/mpev.1996.0045. PMID 8744763. [permanent dead link] ^ Sarah J. Adamowicz; Paul D. N. Hebert; María Christina Marinone (2004). "Species diversity and endemism in the Daphnia
Daphnia
of Argentina: a genetic investigation". Zoological Journal of the Linnean Society. 140 (2): 171–205. doi:10.1111/j.1096-3642.2003.00089.x.  ^ a b Barbara Pietrzak; Anna Bednarska; Magdalena Markowska; Maciej Rojek; Ewa Szymanska; Miroslaw Slusarczyk (2013). "Behavioural and physiological mechanisms behind extreme longevity in Daphnia". Hydrobiologia. 715 (1): 125–134. doi:10.1007/s10750-012-1420-6.  ^ a b c Z. Maciej Gliwicz (2008). "Zooplankton". In Patrick O'Sullivan; C. S. Reynolds. The Lakes Handbook: Limnology and Limnetic Ecology. John Wiley & Sons. pp. 461–516. ISBN 978-0-470-99926-4.  ^ a b Stanley L. Dodson; Carla E. Cáceres; D. Christopher Rogers (2009). " Cladocera
Cladocera
and other Branchiopoda". In James H. Thorp; Alan P. Covich. Ecology and Classification of North American Freshwater Invertebrates (3rd ed.). Academic Press. pp. 773–828. ISBN 978-0-08-088981-8.  ^ C. Michael Hogan (2008). "Makgadikgadi". The Megalithic Portal.  ^ "The amazing Daphnia
Daphnia
water flea". AquaDaily. February 16, 2009. Retrieved February 18, 2009.  ^ Fernández, Carla Eloisa; Rejas, Danny (2017-04-05). "Effects of UVB radiation on grazing of two cladocerans from high-altitude Andean lakes". PLOS ONE. 12 (4): e0174334. doi:10.1371/journal.pone.0174334. ISSN 1932-6203.  ^ USGS Nonindigenous Aquatic Species: Bythotrephes longimanus ^ Central Michigan University: Zooplankton
Zooplankton
of the Great Lakes: Bythotrephes cederstroemi ^ Washington Department of Fish & Wildlife: Conservation: Bythotrephes cederstroemi (Spiny waterflea) ^ USDA National Agriculture Library: Aquatic Species: Spiny Water Flea ^ USGS: Nonindigenous Aquatic Species: Daphnia
Daphnia
lumholtzi ^ Center for Freshwater Biology - University of New Hampshire: Daphnia lumholtzi ^ ISSG: Global Invasive Species Database: Daphnia
Daphnia
lumholtzi (crustacean) ^ James A. Stoeckel, Illinois Natural History Survey: Daphnia lumholtzi: The Next Great Lakes Exotic? ^ Elizabeth A. Colburn (2004), Vernal Pools: Natural History and Conservation, page 118 of paperback second edition from 2008 ^ Patrick Lavens and Patrick Sorgeloos, Manual on the Production and Use of Live Food for Aquaculture: Daphnia
Daphnia
and Moina

External links[edit]

Wikimedia Commons has media related to Daphnia.

Data related to Daphnia
Daphnia
at Wikispecies Daphnia
Daphnia
Genomics Consortium Daphnia
Daphnia
Images and Information at MBL Aquaculture Daphnia: An Aquarist's Guide Waterflea.org: a Community resource for cladoceran biology Daphnia
Daphnia
spp.: taxonomy, facts, life cycle, references at GeoChemBio

Taxon identifiers

Wd: Q269354 ADW: Daphnia ARKive: daphnia-spp BugGuide: 352881 EoL: 41238 EPPO: 1DAPHG Fauna Europaea: 237009 Fossilworks: 284820 GBIF: 2234785 ITIS: 83873 NCBI: 6668 WoRMS: 148370

Authority control

.