Cray-1
   HOME

TheInfoList



OR:

The Cray-1 was a
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructio ...
designed, manufactured and marketed by
Cray Research Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed ...
. Announced in 1975, the first Cray-1 system was installed at
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
in 1976. Eventually, over 100 Cray-1s were sold, making it one of the most successful supercomputers in history. It is perhaps best known for its unique shape, a relatively small C-shaped cabinet with a ring of benches around the outside covering the power supplies and the cooling system. The Cray-1 was the first supercomputer to successfully implement the
vector processor In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data calle ...
design. These systems improve the performance of math operations by arranging memory and registers to quickly perform a single operation on a large set of data. Previous systems like the CDC STAR-100 and
ASC ASC may refer to: Educational institutions * Anglican Schools Commission, Australia * Andres Soriano Colleges of Bislig, located in Surigao del Sur, Philippines * Agnes Scott College, Decatur, Georgia Organizations Australia * Australian Singi ...
had implemented these concepts but did so in a way that seriously limited their performance. The Cray-1 addressed these problems and produced a machine that ran several times faster than any similar design. The Cray-1's architect was Seymour Cray; the chief engineer was Cray Research co-founder Lester Davis. They would go on to design several new machines using the same basic concepts, and retained the performance crown into the 1990s.


History

From 1968 to 1972, Seymour Cray of Control Data Corporation (CDC) worked on the CDC 8600, the successor to his earlier CDC 6600 and CDC 7600 designs. The 8600 was essentially made up of four 7600s in a box with an additional special mode that allowed them to operate lock-step in a SIMD fashion. Jim Thornton, formerly Cray's engineering partner on earlier designs, had started a more radical project known as the CDC STAR-100. Unlike the 8600's brute-force approach to performance, the STAR took an entirely different route. The main processor of the STAR had lower performance than the 7600, but added hardware and instructions to speed up particularly common supercomputer tasks. By 1972, the 8600 had reached a dead end; the machine was so incredibly complex that it was impossible to get one working properly. Even a single faulty component would render the machine non-operational. Cray went to William Norris, Control Data's CEO, saying that a redesign from scratch was needed. At the time, the company was in serious financial trouble, and with the STAR in the pipeline as well, Norris could not invest the money. As a result, Cray left CDC and started
Cray Research Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed ...
very close to the CDC lab. In the back yard of the land he purchased in Chippewa Falls, Cray and a group of former CDC employees started looking for ideas. At first, the concept of building another supercomputer seemed impossible, but after Cray Research's Chief Technology Officer travelled to Wall Street and found a lineup of investors willing to back Cray, all that was needed was a design. For four years Cray Research designed its first computer. In 1975 the 80 MHz Cray-1 was announced. The excitement was so high that a bidding war for the first machine broke out between
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
and
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
, the latter eventually winning and receiving serial number 001 in 1976 for a six-month trial. The National Center for Atmospheric Research (NCAR) was the first official customer of Cray Research in 1977, paying US$8.86 million ($7.9 million plus $1 million for the disks) for serial number 3. The NCAR machine was decommissioned in 1989. The company expected to sell perhaps a dozen of the machines, and set the selling price accordingly, but ultimately over 80 Cray-1s of all types were sold, priced from $5M to $8M. The machine made Seymour Cray a celebrity and his company a success, lasting until the supercomputer crash in the early 1990s. Based on a recommendation by
William Perry William Perry may refer to: Business * William Perry (Queensland businessman) (1835–1891), businessman and politician in Queensland, Australia * William H. Perry (businessman) (1832–1906), American businessman and entrepreneur Politics an ...
's study, the
NSA The National Security Agency (NSA) is a national-level intelligence agency of the United States Department of Defense, under the authority of the Director of National Intelligence (DNI). The NSA is responsible for global monitoring, collec ...
purchased a Cray-1 for theoretical research in cryptanalysis. According to Budiansky, "Though standard histories of Cray Research would persist for decades in stating that the company's first customer was Los Alamos National Laboratory, in fact it was NSA..." The 160 
MFLOPS In computing, floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate mea ...
Cray-1 was succeeded in 1982 by the 800 MFLOPS
Cray X-MP The Cray X-MP was a supercomputer designed, built and sold by Cray Research. It was announced in 1982 as the "cleaned up" successor to the 1975 Cray-1, and was the world's fastest computer from 1983 to 1985 with a quad-processor system performance ...
, the first Cray multi-processing computer. In 1985, the very advanced Cray-2, capable of 1.9 GFLOPS peak performance, succeeded the first two models but met a somewhat limited commercial success because of certain problems at producing sustained performance in real-world applications. A more conservatively designed evolutionary successor of the Cray-1 and X-MP models was therefore made by the name
Cray Y-MP The Cray Y-MP was a supercomputer sold by Cray Research from 1988, and the successor to the company's X-MP. The Y-MP retained software compatibility with the X-MP, but extended the address registers from 24 to 32 bits. High-density VLSI ECL tec ...
and launched in 1988. By comparison, the processor in a typical 2013 smart device, such as a Google Nexus 10 or HTC One, performs at roughly 1 GFLOPS, while the A13 processor in a 2020 iPhone 11 performs at 154.9 GFLOPS, a mark supercomputers succeeding the Cray-1 would not reach until 1994.


Background

Typical scientific workloads consist of reading in large data sets, transforming them in some way and then writing them back out again. Normally the transformations being applied are identical across all of the data points in the set. For instance, the program might add 5 to every number in a set of a million numbers. In traditional computers the program would loop over all million numbers, adding five, thereby executing a million instructions saying a = add b, c. Internally the computer solves this instruction in several steps. First it reads the instruction from memory and decodes it, then it collects any additional information it needs, in this case the numbers b and c, and then finally runs the operation and stores the results. The end result is that the computer requires tens or hundreds of millions of cycles to carry out these operations.


Vector machines

In the STAR, new instructions essentially wrote the loops for the user. The user told the machine where in memory the list of numbers was stored, then fed in a single instruction a(1..1000000) = addv b(1..1000000), c(1..1000000). At first glance it appears the savings are limited; in this case the machine fetches and decodes only a single instruction instead of 1,000,000, thereby saving 1,000,000 fetches and decodes, perhaps one-fourth of the overall time. The real savings are not so obvious. Internally, the
CPU A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, a ...
of the computer is built up from a number of separate parts dedicated to a single task, for instance, adding a number, or fetching from memory. Normally, as the instruction flows through the machine, only one part is active at any given time. This means that each sequential step of the entire process must complete before a result can be saved. The addition of an instruction pipeline changes this. In such machines the CPU will "look ahead" and begin fetching succeeding instructions while the current instruction is still being processed. In this assembly line fashion any one instruction still requires as long to complete, but as soon as it finishes executing, the next instruction is right behind it, with most of the steps required for its execution already completed.
Vector processor In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data calle ...
s use this technique with one additional trick. Because the data layout is in a known format — a set of numbers arranged sequentially in memory — the pipelines can be tuned to improve the performance of fetches. On the receipt of a vector instruction, special hardware sets up the memory access for the arrays and stuffs the data into the processor as fast as possible. CDC's approach in the STAR used what is today known as a ''memory-memory architecture''. This referred to the way the machine gathered data. It set up its pipeline to read from and write to memory directly. This allowed the STAR to use vectors of length not limited by the length of registers, making it highly flexible. Unfortunately, the pipeline had to be very long in order to allow it to have enough instructions in flight to make up for the slow memory. That meant the machine incurred a high cost when switching from processing vectors to performing operations on non-vector operands. Additionally, the low scalar performance of the machine meant that after the switch had taken place and the machine was running scalar instructions, the performance was quite poor. The result was rather disappointing real-world performance, something that could, perhaps, have been forecast by Amdahl's law.


Cray's approach

Cray studied the failure of the STAR and learned from it. He decided that in addition to fast vector processing, his design would also require excellent all-around scalar performance. That way when the machine switched modes, it would still provide superior performance. Additionally he noticed that the workloads could be dramatically improved in most cases through the use of registers. Just as earlier machines had ignored the fact that most operations were being applied to many data points, the STAR ignored the fact that those same data points would be repeatedly operated on. Whereas the STAR would read and process the same memory five times to apply five vector operations on a set of data, it would be much faster to read the data into the CPU's registers once, and then apply the five operations. However, there were limitations with this approach. Registers were significantly more expensive in terms of circuitry, so only a limited number could be provided. This implied that Cray's design would have less flexibility in terms of vector sizes. Instead of reading any sized vector several times as in the STAR, the Cray-1 would have to read only a portion of the vector at a time, but it could then run several operations on that data prior to writing the results back to memory. Given typical workloads, Cray felt that the small cost incurred by being required to break large sequential memory accesses into segments was a cost well worth paying. Since the typical vector operation would involve loading a small set of data into the vector registers and then running several operations on it, the vector system of the new design had its own separate pipeline. For instance, the multiplication and addition units were implemented as separate hardware, so the results of one could be internally pipelined into the next, the instruction decode having already been handled in the machine's main pipeline. Cray referred to this concept as ''chaining'', as it allowed programmers to "chain together" several instructions and extract higher performance.


Description

The new machine was the first Cray design to use
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s (ICs). Although ICs had been available since the 1960s, it was only in the early 1970s that they reached the performance necessary for high-speed applications. The Cray-1 used only four different IC types, an ECL dual 5-4 NOR gate (one 5-input, and one 4-input, each with differential output), another slower MECL 10K 5-4 NOR gate used for address fanout, a 16×4-bit high speed (6 ns) static RAM (SRAM) used for registers and a 1,024×1-bit 48 ns SRAM used for the main memory. These integrated circuits were supplied by Fairchild Semiconductor and
Motorola Motorola, Inc. () was an American multinational telecommunications company based in Schaumburg, Illinois, United States. After having lost $4.3 billion from 2007 to 2009, the company split into two independent public companies, Motorola ...
. In all, the Cray-1 contained about 200,000 gates. ICs were mounted on large five-layer
printed circuit board A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich str ...
s, with up to 144 ICs per board. Boards were then mounted back to back for cooling (see below) and placed in twenty-four racks containing 72 double-boards. The typical module (distinct processing unit) required one or two boards. In all the machine contained 1,662 modules in 113 varieties. Each cable between the modules was a
twisted pair Twisted pair cabling is a type of wiring used for communications in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted b ...
, cut to a specific length in order to guarantee the signals arrived at precisely the right time and minimize electrical reflection. Each signal produced by the ECL circuitry was a differential pair, so the signals were balanced. This tended to make the demand on the power supply more constant and reduce switching noise. The load on the power supply was so evenly balanced that Cray boasted that the power supply was unregulated. To the power supply, the entire computer system looked like a simple resistor. The high-performance ECL circuitry generated considerable heat, and Cray's designers spent as much effort on the design of the refrigeration system as they did on the rest of the mechanical design. In this case, each circuit board was paired with a second, placed back to back with a sheet of copper between them. The copper sheet conducted heat to the edges of the cage, where liquid Freon running in stainless steel pipes drew it away to the cooling unit below the machine. The first Cray-1 was delayed six months due to problems in the cooling system; lubricant that is normally mixed with the Freon to keep the compressor running would leak through the seals and eventually coat the boards with oil until they shorted out. New welding techniques had to be used to properly seal the tubing. In order to bring maximum speed out of the machine, the entire chassis was bent into a large C-shape. Speed-dependent portions of the system were placed on the "inside edge" of the chassis, where the wire-lengths were shorter. This allowed the cycle time to be decreased to 12.5 ns (80 MHz), not as fast as the 8 ns 8600 he had given up on, but fast enough to beat CDC 7600 and the STAR. NCAR estimated that the overall throughput on the system was 4.5 times that of the CDC 7600. The Cray-1 was built as a
64-bit In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit CPUs and ALUs are those that are based on processor registers, address buses, or data buses of that size. A ...
system, a departure from the 7600/6600, which were 60-bit machines (a change was also planned for the 8600). Addressing was 24-bit, with a maximum of 1,048,576 64-bit words (1 megaword) of main memory, where each word also had eight parity bits for a total of 72 bits per word. There were 64 data bits and eight check bits. Memory was spread across 16 interleaved memory banks, each with a 50 ns cycle time, allowing up to four words to be read per cycle. Smaller configurations could have 0.25 or 0.5 megawords of main memory. Maximum aggregate memory bandwidth was 638 Mbit/s. The main register set consisted of eight 64-bit scalar (S) registers and eight 24-bit address (A) registers. These were backed by a set of sixty-four registers each for S and A temporary storage known as T and B respectively, which could not be seen by the functional units. The vector system added another eight 64-element by 64-bit vector (V) registers, as well as a vector length (VL) and vector mask (VM). Finally, the system also included a 64-bit real-time clock register and four 64-bit instruction buffers that held sixty-four 16-bit instructions each. The hardware was set up to allow the vector registers to be fed at one word per cycle, while the address and scalar registers required two cycles. In contrast, the entire 16-word instruction buffer could be filled in four cycles. The Cray-1 had twelve pipelined functional units. The 24-bit address arithmetic was performed in an add unit and a multiply unit. The scalar portion of the system consisted of an add unit, a logical unit, a population count, a leading zero count unit and a shift unit. The vector portion consisted of add, logical and shift units. The floating point functional units were shared between the scalar and vector portions, and these consisted of add, multiply and reciprocal approximation units. The system had limited parallelism. It could issue one instruction per clock cycle, for a theoretical performance of 80  MIPS, but with vector floating-point multiplication and addition occurring in parallel theoretical performance was 160 MFLOPS. (The reciprocal approximation unit could also operate in parallel, but did not deliver a true floating-point result - two additional multiplications were needed to achieve a full division.) Since the machine was designed to operate on large data sets, the design also dedicated considerable circuitry to I/O. Earlier Cray designs at CDC had included separate computers dedicated to this task, but this was no longer needed. Instead the Cray-1 included four six-channel controllers, each of which was given access to main memory once every four cycles. The channels were 16 bits wide and included three control bits and four bits for error correction, so the maximum transfer speed was one word per 100 ns, or 500 thousand words per second for the entire machine. The initial model, the Cray-1A, weighed 5.5
ton Ton is the name of any one of several units of measure. It has a long history and has acquired several meanings and uses. Mainly it describes units of weight. Confusion can arise because ''ton'' can mean * the long ton, which is 2,240 pounds ...
s including the Freon refrigeration system. Configured with 1 million words of main memory, the machine and its power supplies consumed about 115 kW of power; cooling and storage likely more than doubled this figure. A Data General SuperNova S/200 minicomputer served as the maintenance control unit (MCU), which was used to feed the Cray Operating System into the system at boot time, to monitor the CPU during use, and optionally as a front-end computer. Most, if not all, Cray-1As were delivered using the follow-on Data General Eclipse as the MCU.


Cray-1S

The Cray-1S, announced in 1979, was an improved Cray-1 that supported a larger main memory of 1, 2 or 4 million words. The larger main memory was made possible through the use of 4,096 x 1-bit bipolar RAM ICs with a 25 ns access time. The Data General minicomputers were optionally replaced with an in-house 16-bit design running at 80 MIPS. The I/O subsystem was separated from the main machine, connected to the main system via a 6 Mbit/s control channel and a 100 Mbit/s High Speed Data Channel. This separation made the 1S look like two "half Crays" separated by a few feet, which allowed the I/O system to be expanded as needed. Systems could be bought in a variety of configurations from the S/500 with no I/O and 0.5 million words of memory to the S/4400 with four I/O processors and 4 million words of memory.


Cray-1M

The Cray-1M, announced in 1982, replaced the Cray-1S. It had a faster 12 ns cycle time and used less expensive
MOS MOS or Mos may refer to: Technology * MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor * Mathematical Optimization Society * Model output statistics, a weather-forecasting technique * MOS (fil ...
RAM in the main memory. The 1M was supplied in only three versions, the M/1200 with 1 million words in 8 banks, or the M/2200 and M/4200 with 2 or 4 million words in 16 banks. All of these machines included two, three or four I/O processors, and the system added an optional second High Speed Data Channel. Users could add a Solid-state Storage Device with 8 to 32 million words of MOS RAM.


Software

In 1978 the first standard software package for the Cray-1 was released, consisting of three main products: * Cray Operating System (COS) (later machines would run
UNICOS UNICOS is a range of Unix and after it Linux operating system (OS) variants developed by Cray for its supercomputers. UNICOS is the successor of the Cray Operating System (COS). It provides network clustering and source code compatibility lay ...
, Cray's
UNIX Unix (; trademarked as UNIX) is a family of multitasking, multiuser computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, ...
flavor) * Cray Assembly Language (CAL) * Cray FORTRAN (CFT), the first automatically vectorizing Fortran compiler The
United States Department of Energy The United States Department of Energy (DOE) is an executive department of the U.S. federal government that oversees U.S. national energy policy and manages the research and development of nuclear power and nuclear weapons in the United States ...
funded sites from
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
, Los Alamos Scientific Laboratory, Sandia National Laboratories and the
National Science Foundation The National Science Foundation (NSF) is an independent agency of the United States government that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National ...
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructio ...
centers (for high-energy physics) represented the second largest block with LLL's Cray Time Sharing System (CTSS). CTSS was written in a dynamic memory Fortran, first named LRLTRAN, which ran on CDC 7600s, renamed CVC (pronounced "Civic") when vectorization for the Cray-1 was added. Cray Research attempted to support these sites accordingly. These software choices had influences on later
minisupercomputer Minisupercomputers constituted a short-lived class of computers that emerged in the mid-1980s, characterized by the combination of vector processing and small-scale multiprocessing. As scientific computing using vector processors became more po ...
s, also known as " crayettes". NCAR has its own operating system (NCAROS). The
National Security Agency The National Security Agency (NSA) is a national-level intelligence agency of the United States Department of Defense, under the authority of the Director of National Intelligence (DNI). The NSA is responsible for global monitoring, collecti ...
developed its own operating system (Folklore) and language (IMP with ports of Cray Pascal and C and Fortran 90 later) Libraries started with Cray Research's own offerings and Netlib. Other operating systems existed, but most languages tended to be Fortran or Fortran-based.
Bell Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial Research and development, research and scientific developm ...
, as proof of both portability concept and circuit design, moved the first C compiler to their Cray-1 (non-vectorizing). This act would later give CRI a six-month head start on the Cray-2 Unix port to
ETA Systems Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
' detriment, and
Lucasfilm Lucasfilm Ltd. LLC is an American film and television production company and a subsidiary of Walt Disney Studios, which is a business segment of The Walt Disney Company. The studio is best known for creating and producing the '' Star Wars'' and ...
's first computer generated test film, '' The Adventures of André & Wally B.''. Application software generally tends to be either classified (''e.g.'' nuclear code, cryptanalytic code) or proprietary (''e.g.'' petroleum reservoir modeling). This was because little software was shared between customers and university customers. The few exceptions were climatological and meteorological programs until the NSF responded to the Japanese
Fifth Generation Computer Systems project The Fifth Generation Computer Systems (FGCS) was a 10-year initiative begun in 1982 by Japan's Ministry of International Trade and Industry (MITI) to create computers using massively parallel computing and logic programming. It aimed to create ...
and created its supercomputer centers. Even then, little code was shared. Partly because Cray were interested in the publicity, they supported the development of
Cray Blitz Cray Blitz was a computer chess program written by Robert Hyatt, Harry L. Nelson, and Albert Gower to run on the Cray supercomputer. It was derived from "Blitz" a program that Hyatt started to work on as an undergraduate. "Blitz" played its first ...
which won the fourth (1983) and fifth (1986) World Computer Chess Championship, as well as the 1983 and 1984
North American Computer Chess Championship The North American Computer Chess Championship was a computer chess championship held from 1970 to 1994. It was organised by the Association for Computing Machinery and by Monty Newborn, Professor of Computer Science at McGill University. It was one ...
. The program, Chess, that dominated in the 1970s ran on Control Data Corporation supercomputers.


Museums

Cray-1s are on display at the following locations: * Bradbury Science Museum in
Los Alamos, New Mexico Los Alamos is an census-designated place in Los Alamos County, New Mexico, United States, that is recognized as the development and creation place of the atomic bomb—the primary objective of the Manhattan Project by Los Alamos National Labo ...
* Chippewa Falls Museum of Industry and Technology in Chippewa Falls, Wisconsin *The Cray Inc. offices at Cray Plaza in
St. Paul, Minnesota Saint Paul (abbreviated St. Paul) is the capital of the U.S. state of Minnesota and the county seat of Ramsey County. Situated on high bluffs overlooking a bend in the Mississippi River, Saint Paul is a regional business hub and the center o ...
*
Computer History Museum The Computer History Museum (CHM) is a museum of computer history, located in Mountain View, California. The museum presents stories and artifacts of Silicon Valley and the information age, and explores the computing revolution and its impact o ...
in
Mountain View, California Mountain View is a city in Santa Clara County, California, United States. Named for its views of the Santa Cruz Mountains, it has a population of 82,376. Mountain View was integral to the early history and growth of Silicon Valley, and is t ...
* Computer Museum of America, Roswell, Georgia, US *
DigiBarn Computer Museum The DigiBarn Computer Museum, or simply DigiBarn, is a computer history museum in Boulder Creek, California, United States. The museum is housed in a 90-year-old barn constructed from old-growth Redwood in the Santa Cruz Mountains, which is adjace ...
*
Deutsches Museum The Deutsches Museum (''German Museum'', officially (English: ''German Museum of Masterpieces of Science and Technology'')) in Munich, Germany, is the world's largest museum of science and technology, with about 28,000 exhibited objects from ...
in
Munich Munich ( ; german: München ; bar, Minga ) is the capital and most populous city of the German state of Bavaria. With a population of 1,558,395 inhabitants as of 31 July 2020, it is the third-largest city in Germany, after Berlin and ...
*
ETH Zurich (colloquially) , former_name = eidgenössische polytechnische Schule , image = ETHZ.JPG , image_size = , established = , type = Public , budget = CHF 1.896 billion (2021) , rector = Günther Dissertori , president = Joël Mesot , a ...
- Eidgenössische Technische Hochschule
Zürich , neighboring_municipalities = Adliswil, Dübendorf, Fällanden, Kilchberg, Maur, Oberengstringen, Opfikon, Regensdorf, Rümlang, Schlieren, Stallikon, Uitikon, Urdorf, Wallisellen, Zollikon , twintowns = Kunming, San Francisco Z ...
,
Switzerland ). Swiss law does not designate a ''capital'' as such, but the federal parliament and government are installed in Bern, while other federal institutions, such as the federal courts, are in other cities (Bellinzona, Lausanne, Luzern, Neuchâtel ...
* Living Computers: Museum + Labs in
Seattle, Washington Seattle ( ) is a seaport city on the West Coast of the United States. It is the seat of King County, Washington. With a 2020 population of 737,015, it is the largest city in both the state of Washington and the Pacific Northwest region ...
* National Center for Atmospheric Research in
Boulder, Colorado Boulder is a home rule city that is the county seat and most populous municipality of Boulder County, Colorado, United States. The city population was 108,250 at the 2020 United States census, making it the 12th most populous city in Colora ...
* National Air and Space Museum in Washington, D.C. *
Musée Bolo The Musée Bolo or Swiss Museum of Computer Science, Digital Culture and Video Games is a private museum dedicated to the digital revolution. Its exhibition space is located on the site of the École Polytechnique Fédérale de Lausanne (EPFL) in ...
in
Lausanne , neighboring_municipalities= Bottens, Bretigny-sur-Morrens, Chavannes-près-Renens, Cheseaux-sur-Lausanne, Crissier, Cugy, Écublens, Épalinges, Évian-les-Bains (FR-74), Froideville, Jouxtens-Mézery, Le Mont-sur-Lausanne, Lugrin (FR ...
,
Switzerland ). Swiss law does not designate a ''capital'' as such, but the federal parliament and government are installed in Bern, while other federal institutions, such as the federal courts, are in other cities (Bellinzona, Lausanne, Luzern, Neuchâtel ...
* The National Museum of Computing at
Bletchley Park Bletchley Park is an English country house and estate in Bletchley, Milton Keynes (Buckinghamshire) that became the principal centre of Allied code-breaking during the Second World War. The mansion was constructed during the years following ...
*
Science Museum A science museum is a museum devoted primarily to science. Older science museums tended to concentrate on static displays of objects related to natural history, paleontology, geology, industry and industrial machinery, etc. Modern trends in ...
in
London London is the capital and List of urban areas in the United Kingdom, largest city of England and the United Kingdom, with a population of just under 9 million. It stands on the River Thames in south-east England at the head of a estuary dow ...
* Swedish National Museum of Science and Technology in Stockholm, SwedenTM44354 Dator Cray Research, Inc. Cray Research, Inc. 1976 SAAB Aerospace
, p. 52, Datorföremål+på+TM.pdf. Retrieved 2012-05-15.
* Computer Museum of America in Roswell, Georgia has four Cray-1s, plus other Cray computers


Other images of the Cray-1

File:Cray 1 IMG 9126.jpg, Cray-1 with internals exposed at EPFL File:Cray-1-p1010225.jpg, Logic boards File:Cray-1-p1010227.jpg, Inside of the tower File:Cray-1-p1010237.jpg, Cooling system File:Cray-1-p1010230.jpg, Top of the casing File:Cray-1-p1010233.jpg, Close-up of logic boards File:Cray-1A-A1621b.jpg, Cray-1A power supply detail File:Cray-1 (1).jpg, Cray-1 at
Computer History Museum The Computer History Museum (CHM) is a museum of computer history, located in Mountain View, California. The museum presents stories and artifacts of Silicon Valley and the information age, and explores the computing revolution and its impact o ...
File:Cray-1-Computer History Museum-20070512.jpg, Cray-1 at
Computer History Museum The Computer History Museum (CHM) is a museum of computer history, located in Mountain View, California. The museum presents stories and artifacts of Silicon Valley and the information age, and explores the computing revolution and its impact o ...
File:Cray-1-deutsches-museum.jpg, Cray-1 at
Deutsches Museum The Deutsches Museum (''German Museum'', officially (English: ''German Museum of Masterpieces of Science and Technology'')) in Munich, Germany, is the world's largest museum of science and technology, with about 28,000 exhibited objects from ...
File:Cray1LondonScienceMuseum.jpg, The Cray-1 at the Science Museum, London File:Cray-1 at Computer Museum of America.jpg, Cray-1 at the Computer Museum of America, Roswell, Georgia, US File:Computer Museum of America (64).jpg, Logic boards File:Computer Museum of America (32).jpg, Some of the 50 miles of wiring File:Seymour_Cray.jpg, Seymour Cray with his Cray-1


References


External links


''CRAY-1 Computer System Hardware Reference Manual'', Publication No. 2240004 Rev.C 11/77 (first three chapters)
– Fro
DigiBarn
/ Ed Thelen
''CRAY-1 Computer System Hardware Reference Manual'', Publication No. 2240004 Rev.C 11/77 (full, scanned, PDF)Collection of on-line Cray manuals & documentation @ BitsaversCray Channels Magazine @ The Centre for Computing HistoryCray Manuals & Documentation @ The Centre for Computing HistoryCray Users Group Publications @ The Centre for Computing HistoryNCAR Supercomputer GalleryVerilog definition of Cray-1A CPU logic
{{Cray computers 1 Vector supercomputers Computer-related introductions in 1976 64-bit computers