The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

This article uses the classical treatment of tensors and Einstein summation convention throughout and the Minkowski metric has the form diag(+1, −1, −1, −1). Where the equations are specified as holding in a vacuum, one could instead regard them as the formulation of Maxwell's equations in terms of total charge and current.

For a more general overview of the relationships between classical electromagnetism and special relativity, including various conceptual implications of this picture, see Classical electromagnetism and special relativity.

The bound current and free current as defined above are automatically and separately conserved